Solveeit Logo

Question

Question: Let A be a square matrix. Which of the following is/are not skew-symmetric matrix/matrices? (a)\(A...

Let A be a square matrix. Which of the following is/are not skew-symmetric matrix/matrices?
(a)AATA - {A^T} (b)ATA{A^T} - A
(c)AATATAA{A^T} - {A^T}A (d)A+ATA + {A^T}, whenAAis skew-symmetric

Explanation

Solution

Hint: For a matrix AA to be skew-symmetric AT=A{A^T} = - A must be true.

Let AA be any square matrix A = \left( {\begin{array}{*{20}{c}} 1&2 \\\ 3&4 \end{array}} \right)
The condition for a matrix AA to be skew-symmetric is
If AT=A{A^T} = - A, then AA is skew-symmetric. …(1)
Let us consider all the given options one by one and find out if they are skew-symmetric or not.
Option (a) is AATA - {A^T}. For this to be skew-symmetric, from (1) the condition is
(AAT)T=(AAT){\left( {A - {A^T}} \right)^T} = - \left( {A - {A^T}} \right) …(2)
Let us find AT{A^T}. The transpose of a matrix is written by interchanging the rows and columns into columns and rows.
{A^T} = \left( {\begin{array}{*{20}{c}} 1&3 \\\ 2&4 \end{array}} \right)
A - {A^T} = \left( {\begin{array}{*{20}{c}} 1&2 \\\ 3&4 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 1&3 \\\ 2&4 \end{array}} \right) \\\ A - {A^T} = \left( {\begin{array}{*{20}{c}} 0&{ - 1} \\\ 1&0 \end{array}} \right) \\\
{\left( {A - {A^T}} \right)^T} = \left( {\begin{array}{*{20}{c}} 0&1 \\\ { - 1}&0 \end{array}} \right) …(3)
- \left( {A - {A^T}} \right) = - \left( {\begin{array}{*{20}{c}} 0&{ - 1} \\\ 1&0 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0&1 \\\ { - 1}&0 \end{array}} \right) …(4)
From (2), (3), and (4), we find that (AAT)T=(AAT){\left( {A - {A^T}} \right)^T} = - \left( {A - {A^T}} \right)
holds true. So, AATA - {A^T} is skew-symmetric.
Option (b) is ATA{A^T} - A. For this to be skew-symmetric, from (1) the condition is
(ATA)T=(ATA){\left( {{A^T} - A} \right)^T} = - \left( {{A^T} - A} \right) …(5)
{A^T} - A = \left( {\begin{array}{*{20}{c}} 1&3 \\\ 2&4 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 1&2 \\\ 3&4 \end{array}} \right) \\\ {A^T} - A = \left( {\begin{array}{*{20}{c}} 0&1 \\\ { - 1}&0 \end{array}} \right) \\\
{\left( {{A^T} - A} \right)^T} = \left( {\begin{array}{*{20}{c}} 0&{ - 1} \\\ 1&0 \end{array}} \right) …(6)
- \left( {{A^T} - A} \right) = - \left( {\begin{array}{*{20}{c}} 0&1 \\\ { - 1}&0 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0&{ - 1} \\\ 1&0 \end{array}} \right) …(7)
From (5), (6), and (7), we find that (ATA)T=(ATA){\left( {{A^T} - A} \right)^T} = - \left( {{A^T} - A} \right)
holds true. So, ATA{A^T} - A is skew-symmetric.
Option (c) is AATATAA{A^T} - {A^T}A. For this to be skew-symmetric, from (1) the condition is
(AATATA)T=(AATATA){\left( {A{A^T} - {A^T}A} \right)^T} = - \left( {A{A^T} - {A^T}A} \right) …(8)
A{A^T} = \left( {\begin{array}{*{20}{c}} 1&2 \\\ 3&4 \end{array}} \right)\left( {\begin{array}{*{20}{c}} 1&3 \\\ 2&4 \end{array}} \right) \\\ A{A^T} = \left( {\begin{array}{*{20}{c}} {1\left( 1 \right) + 2\left( 2 \right)}&{1\left( 3 \right) + 2\left( 4 \right)} \\\ {3\left( 1 \right) + 4\left( 2 \right)}&{3\left( 3 \right) + 4\left( 4 \right)} \end{array}} \right) \\\ A{A^T} = \left( {\begin{array}{*{20}{c}} 5&{11} \\\ {11}&{25} \end{array}} \right) \\\
{A^T}A = \left( {\begin{array}{*{20}{c}} 1&3 \\\ 2&4 \end{array}} \right)\left( {\begin{array}{*{20}{c}} 1&2 \\\ 3&4 \end{array}} \right) \\\ {A^T}A = \left( {\begin{array}{*{20}{c}} {1\left( 1 \right) + 3\left( 3 \right)}&{1\left( 2 \right) + 3\left( 4 \right)} \\\ {2\left( 1 \right) + 4\left( 3 \right)}&{2\left( 2 \right) + 4\left( 4 \right)} \end{array}} \right) \\\ {A^T}A = \left( {\begin{array}{*{20}{c}} {10}&{14} \\\ {14}&{20} \end{array}} \right) \\\
A{A^T} - {A^T}A = \left( {\begin{array}{*{20}{c}} 5&{11} \\\ {11}&{25} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {10}&{14} \\\ {14}&{20} \end{array}} \right) \\\ A{A^T} - {A^T}A = \left( {\begin{array}{*{20}{c}} { - 5}&{ - 3} \\\ { - 3}&5 \end{array}} \right) \\\
{\left( {A{A^T} - {A^T}A} \right)^T} = \left( {\begin{array}{*{20}{c}} { - 5}&{ - 3} \\\ { - 3}&5 \end{array}} \right) …(9)
- \left( {A{A^T} - {A^T}A} \right) = - \left( {\begin{array}{*{20}{c}} { - 5}&{ - 3} \\\ { - 3}&5 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 5&3 \\\ 3&{ - 5} \end{array}} \right) …(10)
From (8), (9), and (10), we find that (AATATA)T(AATATA){\left( {A{A^T} - {A^T}A} \right)^T} \ne - \left( {A{A^T} - {A^T}A} \right). So, AATATAA{A^T} - {A^T}A is not skew-symmetric.
Option (d) is A+ATA + {A^T}, when AA is skew-symmetric. It is given that AA is skew-symmetric. So, from (1),
AT=A{A^T} = - A …(11)
For A+ATA + {A^T} to be skew-symmetric, we need to prove that (A+AT)T=\-(A+AT){\left( {A + {A^T}} \right)^T} = \- \left( {A + {A^T}} \right)
Using (11) here, we get
LHS = {(A + {A^T})^T} = {(A + {( - A)^T})^T} = \left( {\begin{array}{*{20}{c}} 0&0 \\\ 0&0 \end{array}} \right) \\\ RHS = - (A + {A^T}) = - (A + ( - A)) = \left( {\begin{array}{*{20}{c}} 0&0 \\\ 0&0 \end{array}} \right) \\\
LHS=RHS
So, (A+AT)T=(A+AT){\left( {A + {A^T}} \right)^T} = - \left( {A + {A^T}} \right) holds true. Hence, A+ATA + {A^T} is skew-symmetric, when AA is skew-symmetric.
Hence, the only option (c) is not skew-symmetric.

Note: This problem can be alternatively solved without using the sample matrix and just by
using the formula (A+B)T=AT+BT{\left( {A + B} \right)^T} = {A^T} + {B^T} for each of the statements given
to prove the condition for a skew-symmetric matrix. For example, for this AATA - {A^T} option,
the condition is (AAT)T=(AAT){\left( {A - {A^T}} \right)^T} = - \left( {A - {A^T}} \right). LHS=(AAT)T=AT(AT)T=ATA=(AAT)=RHSLHS = {\left( {A - {A^T}} \right)^T} = {A^T} - {\left( {{A^T}} \right)^T} = {A^T} - A = - \left( {A - {A^T}} \right) = RHS. Similarly, this can be done for all options to prove it.
.