Question
Question: Let A be a square matrix. Which of the following is/are not skew-symmetric matrix/matrices? (a)\(A...
Let A be a square matrix. Which of the following is/are not skew-symmetric matrix/matrices?
(a)A−AT (b)AT−A
(c)AAT−ATA (d)A+AT, whenAis skew-symmetric
Solution
Hint: For a matrix A to be skew-symmetric AT=−A must be true.
Let A be any square matrix A = \left( {\begin{array}{*{20}{c}}
1&2 \\\
3&4
\end{array}} \right)
The condition for a matrix A to be skew-symmetric is
If AT=−A, then A is skew-symmetric. …(1)
Let us consider all the given options one by one and find out if they are skew-symmetric or not.
Option (a) is A−AT. For this to be skew-symmetric, from (1) the condition is
(A−AT)T=−(A−AT) …(2)
Let us find AT. The transpose of a matrix is written by interchanging the rows and columns into columns and rows.
{A^T} = \left( {\begin{array}{*{20}{c}}
1&3 \\\
2&4
\end{array}} \right)
A - {A^T} = \left( {\begin{array}{*{20}{c}}
1&2 \\\
3&4
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&3 \\\
2&4
\end{array}} \right) \\\
A - {A^T} = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\\
1&0
\end{array}} \right) \\\
{\left( {A - {A^T}} \right)^T} = \left( {\begin{array}{*{20}{c}}
0&1 \\\
{ - 1}&0
\end{array}} \right) …(3)
- \left( {A - {A^T}} \right) = - \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\\
1&0
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&1 \\\
{ - 1}&0
\end{array}} \right) …(4)
From (2), (3), and (4), we find that (A−AT)T=−(A−AT)
holds true. So, A−AT is skew-symmetric.
Option (b) is AT−A. For this to be skew-symmetric, from (1) the condition is
(AT−A)T=−(AT−A) …(5)
{A^T} - A = \left( {\begin{array}{*{20}{c}}
1&3 \\\
2&4
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&2 \\\
3&4
\end{array}} \right) \\\
{A^T} - A = \left( {\begin{array}{*{20}{c}}
0&1 \\\
{ - 1}&0
\end{array}} \right) \\\
{\left( {{A^T} - A} \right)^T} = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\\
1&0
\end{array}} \right) …(6)
- \left( {{A^T} - A} \right) = - \left( {\begin{array}{*{20}{c}}
0&1 \\\
{ - 1}&0
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\\
1&0
\end{array}} \right) …(7)
From (5), (6), and (7), we find that (AT−A)T=−(AT−A)
holds true. So, AT−A is skew-symmetric.
Option (c) is AAT−ATA. For this to be skew-symmetric, from (1) the condition is
(AAT−ATA)T=−(AAT−ATA) …(8)
A{A^T} = \left( {\begin{array}{*{20}{c}}
1&2 \\\
3&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&3 \\\
2&4
\end{array}} \right) \\\
A{A^T} = \left( {\begin{array}{*{20}{c}}
{1\left( 1 \right) + 2\left( 2 \right)}&{1\left( 3 \right) + 2\left( 4 \right)} \\\
{3\left( 1 \right) + 4\left( 2 \right)}&{3\left( 3 \right) + 4\left( 4 \right)}
\end{array}} \right) \\\
A{A^T} = \left( {\begin{array}{*{20}{c}}
5&{11} \\\
{11}&{25}
\end{array}} \right) \\\
{A^T}A = \left( {\begin{array}{*{20}{c}}
1&3 \\\
2&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&2 \\\
3&4
\end{array}} \right) \\\
{A^T}A = \left( {\begin{array}{*{20}{c}}
{1\left( 1 \right) + 3\left( 3 \right)}&{1\left( 2 \right) + 3\left( 4 \right)} \\\
{2\left( 1 \right) + 4\left( 3 \right)}&{2\left( 2 \right) + 4\left( 4 \right)}
\end{array}} \right) \\\
{A^T}A = \left( {\begin{array}{*{20}{c}}
{10}&{14} \\\
{14}&{20}
\end{array}} \right) \\\
A{A^T} - {A^T}A = \left( {\begin{array}{*{20}{c}}
5&{11} \\\
{11}&{25}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}&{14} \\\
{14}&{20}
\end{array}} \right) \\\
A{A^T} - {A^T}A = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 3} \\\
{ - 3}&5
\end{array}} \right) \\\
{\left( {A{A^T} - {A^T}A} \right)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 3} \\\
{ - 3}&5
\end{array}} \right) …(9)
- \left( {A{A^T} - {A^T}A} \right) = - \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 3} \\\
{ - 3}&5
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5&3 \\\
3&{ - 5}
\end{array}} \right) …(10)
From (8), (9), and (10), we find that (AAT−ATA)T=−(AAT−ATA). So, AAT−ATA is not skew-symmetric.
Option (d) is A+AT, when A is skew-symmetric. It is given that A is skew-symmetric. So, from (1),
AT=−A …(11)
For A+AT to be skew-symmetric, we need to prove that (A+AT)T=\-(A+AT)
Using (11) here, we get
LHS = {(A + {A^T})^T} = {(A + {( - A)^T})^T} = \left( {\begin{array}{*{20}{c}}
0&0 \\\
0&0
\end{array}} \right) \\\
RHS = - (A + {A^T}) = - (A + ( - A)) = \left( {\begin{array}{*{20}{c}}
0&0 \\\
0&0
\end{array}} \right) \\\
LHS=RHS
So, (A+AT)T=−(A+AT) holds true. Hence, A+AT is skew-symmetric, when A is skew-symmetric.
Hence, the only option (c) is not skew-symmetric.
Note: This problem can be alternatively solved without using the sample matrix and just by
using the formula (A+B)T=AT+BT for each of the statements given
to prove the condition for a skew-symmetric matrix. For example, for this A−AT option,
the condition is (A−AT)T=−(A−AT). LHS=(A−AT)T=AT−(AT)T=AT−A=−(A−AT)=RHS. Similarly, this can be done for all options to prove it.
.