Solveeit Logo

Question

Mathematics Question on Matrix

Let A be a square matrix such that AAT=IAA^T=I.Then 12A[(A+AT)2+(AAT)2]\frac{1}{2}A[(A+A^T)^2+(A-A^T)^2] is equal to

A

A2+I

B

A3+I

C

A2+AT

D

A3+AT

Answer

A3+AT

Explanation

Solution

Step 1: Use the Condition AA=I=AAAA^\top = I = A^\top A

Given that AA=IAA^\top = I, we can substitute this property in the expression.

Step 2: Expand the Expression

12A[(A+A)2+(AA)2]\frac{1}{2} A \left[(A + A^\top)^2 + (A - A^\top)^2\right]

Expanding (A+A)2(A + A^\top)^2 and (AA)2(A - A^\top)^2, we get:

12A[A2+(A)2+2AA+A2+(A)22AA]\frac{1}{2} A \left[A^2 + (A^\top)^2 + 2AA^\top + A^2 + (A^\top)^2 - 2AA^\top\right]

=A[A2+(A)2]= A \left[A^2 + (A^\top)^2\right]

Step 3: Simplify the Result

=A3+A= A^3 + A^\top

So, the correct answer is: A3+AA^3 + A^\top