Solveeit Logo

Question

Question: Let $A$ be a square matrix of order 3 such that $adj(adj(adj(A)))=\begin{bmatrix} 16 & 0 & 4 \\ 5 & ...

Let AA be a square matrix of order 3 such that adj(adj(adj(A)))=[1604540143]adj(adj(adj(A)))=\begin{bmatrix} 16 & 0 & 4 \\ 5 & 4 & 0 \\ 1 & 4 & 3 \end{bmatrix} and det(A)(A) is positive, then which of the following must be correct?

A

8trace(A1)=328 \cdot \text{trace}(A^{-1}) = 32

B

det(adj A)=4\det(\text{adj } A) = 4

C

8trace(A1)=238 \cdot \text{trace}(A^{-1}) = 23

D

det(adj A)=2\det(\text{adj } A) = 2

Answer

Options 2 and 3 are correct.

Explanation

Solution

Using the identities for adjugate, we show that adj(adj(adjA))=(detA)3A1adj(adj(adj A)) = (\det A)^3A^{-1}. Equating this with the given matrix, we obtain trace(A1)=23(detA)3\text{trace}(A^{-1}) = \frac{23}{(\det A)^3} and, via computing the determinant of the given matrix, deduce that detA=2\det A = 2. Hence, det(adj A)=4\det(\text{adj } A) = 4 and 8trace(A1)=238 \cdot \text{trace}(A^{-1}) = 23.