Solveeit Logo

Question

Question: Let A be a square matrix all of whose entries are integers. Then, which one of the following is true...

Let A be a square matrix all of whose entries are integers. Then, which one of the following is true?
A. If detA=±1\det A=\pm 1, then A1{{A}^{-1}} exists and all its entries are integers.
B. If detA=±1\det A=\pm 1, then A1{{A}^{-1}} need not exist.
C. If detA=±1\det A=\pm 1, then A1{{A}^{-1}} exists but all its entries are not necessarily integers.
D. if detA±1\det A\ne \pm 1, then A1{{A}^{-1}} exists and all its entries are non-integers.

Explanation

Solution

In this problem we need to find the correct option which is related to the given data. In the problem we have given that AA be a square matrix all of whose entries are integers. So, we will assume a square matrix of desired order and try to find the inverse of the matrix by calculating the values of adj(A)adj\left( A \right), A\left| A \right|. From the values of A1{{A}^{-1}}, A\left| A \right| we will choose one correct option from the given options.

Complete step-by-step solution:
Given that the matrix AA is a square matrix all of whose entries are integers.
Let us assume the matrix AA as A=[10 01 ]A=\left[ \begin{matrix} -1 & 0 \\\ 0 & -1 \\\ \end{matrix} \right]
Now the determinant of the matrix AA will be
A=10 01 \Rightarrow \left| A \right|=\left| \begin{matrix} -1 & 0 \\\ 0 & -1 \\\ \end{matrix} \right|
We know that the value of ab cd =adcb\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=ad-cb, hence the determinant of the matrix AA will be
A=1(1)0(0) A=1 \begin{aligned} & \Rightarrow \left| A \right|=-1\left( -1 \right)-0\left( 0 \right) \\\ & \Rightarrow \left| A \right|=1 \\\ \end{aligned}
Here the value of A\left| A \right| is 11. Now the value of adj(A)adj\left( A \right) will be
adj(A)=[1(0) (0)1 ] adj(A)=[10 01 ] \begin{aligned} & \Rightarrow adj\left( A \right)=\left[ \begin{matrix} -1 & -\left( 0 \right) \\\ -\left( 0 \right) & -1 \\\ \end{matrix} \right] \\\ & \Rightarrow adj\left( A \right)=\left[ \begin{matrix} -1 & 0 \\\ 0 & -1 \\\ \end{matrix} \right] \\\ \end{aligned}
From the above values, the value of A1{{A}^{-1}} will be
A1=1Aadj(A) A1=11[10 01 ] A1=[10 01 ] \begin{aligned} & \Rightarrow {{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right) \\\ & \Rightarrow {{A}^{-1}}=\dfrac{1}{1}\left[ \begin{matrix} -1 & 0 \\\ 0 & -1 \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{-1}}=\left[ \begin{matrix} -1 & 0 \\\ 0 & -1 \\\ \end{matrix} \right] \\\ \end{aligned}
From the above value we can say that ‘If detA=±1\det A=\pm 1, then A1{{A}^{-1}} exists and all its entries are integers’.
Hence option – A is the correct one.

Note: For this problem we can directly write the answer without assuming the matrix because we have the formula for the inverse matrix as A1=1Aadj(A){{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right). From this formula we can say that the inverse of an integer matrix should have integers entries.