Question
Quantitative Aptitude Question on Square and Square Roots
Let A be a real number. Then the roots of the equation x2−4x−log2A=0 are real and distinct if and only if
A
A>161
B
A>81
C
A<161
D
A<81
Answer
A>161
Explanation
Solution
For quadratic equation ax2+bx+c=0, the roots are real and distinct if b2−4ac>0
We have, x2−4x−log2A=0
∴(−4)2−4×1×(−log2A)>0
⇒16+4log2A>0
⇒log2A>−4
⇒A>2−4
⇒A>116