Solveeit Logo

Question

Quantitative Aptitude Question on Square and Square Roots

Let A be a real number. Then the roots of the equation x24xlog2A=0x^2-4x-log_{2}A=0 are real and distinct if and only if

A

A>116A>\frac{1}{16}

B

A>18A>\frac{1}{8}

C

A<116A<\frac{1}{16}

D

A<18A<\frac{1}{8}

Answer

A>116A>\frac{1}{16}

Explanation

Solution

For quadratic equation ax2+bx+c=0ax^2+bx+c=0, the roots are real and distinct if b24ac>0b^2−4ac>0
We have, x24xlog2A=0x^2−4x−log_2A=0
(4)24×1×(log2A)>0∴(−4)^2−4×1×(−log_2A)>0

16+4log2A>0⇒16+4log_2A>0

log2A>4⇒log_2A>−4

A>24⇒A>2−4

A>116⇒A>116