Question
Mathematics Question on Matrices
Let A be a non-singular matrix of order 3. If det(3adj(2adj((detA)A)))=3−13⋅2−10 and det(3adj(2A))=2m⋅3n, then ∣3m+2n∣ is equal to __________.
Step 1: Simplify ∣3adj(2adj(∣A∣A))∣
Using determinant properties:
∣3adj(2adj(∣A∣A))∣=∣3∣×∣adj(2)∣×∣adj(∣A∣A)∣.
1. Simplify ∣adj(∣A∣A)∣:
Using the property ∣adj(A)∣=∣A∣n−1, where n=4:
∣adj(∣A∣A)∣=∣A∣4.
2. Simplify ∣adj(2)∣:
Using adj(kA)=kn−1adj(A):
∣adj(2)∣=2n−1=23.
Thus:
∣3adj(2adj(∣A∣A))∣=33×23×∣A∣4×∣A∣4=33×23×∣A∣8.
Given:
∣3adj(2adj(∣A∣A))∣=2−10×3−13.
Equating powers of 2 and 3:
23×∣A∣8=2−10,33×∣A∣8=3−13.
Solve for ∣A∣:
∣A∣=2−1×3−1.
Step 2: Simplify ∣3adj(2A)∣
∣3adj(2A)∣=∣3∣×∣adj(2A)∣=32×∣adj(2)∣2×∣A∣2. ∣3adj(2A)∣=32×22×(2−1×3−1)2=24×31.
Step 3: Compute ∣3m+2n∣
Given ∣A∣=2m⋅3n, substitute m=−4, n=−1:
3m+2n=3(−4)+2(−1)=−12−2=−14. ∣3m+2n∣=14.