Solveeit Logo

Question

Mathematics Question on Matrices

Let A be a non-singular matrix of order 3. If det(3adj(2adj((detA)A)))=313210\text{det}\left(3 \text{adj}(2 \text{adj}((\text{det} A) A))\right) = 3^{-13} \cdot 2^{-10} and det(3adj(2A))=2m3n,\text{det}\left(3 \text{adj}(2 A)\right) = 2^m \cdot 3^n, then 3m+2n|3m + 2n| is equal to __________.

Answer

Step 1: Simplify 3adj(2adj(AA))|3\operatorname{adj}(2\operatorname{adj}(|A|A))|

Using determinant properties:

3adj(2adj(AA))=3×adj(2)×adj(AA).|3\operatorname{adj}(2\operatorname{adj}(|A|A))| = |3| \times |\operatorname{adj}(2)| \times |\operatorname{adj}(|A|A)|.

1. Simplify adj(AA)|\operatorname{adj}(|A|A)|:

Using the property adj(A)=An1|\operatorname{adj}(A)| = |A|^{n-1}, where n=4n = 4:

adj(AA)=A4.|\operatorname{adj}(|A|A)| = |A|^4.

2. Simplify adj(2)|\operatorname{adj}(2)|:

Using adj(kA)=kn1adj(A)\operatorname{adj}(kA) = k^{n-1}\operatorname{adj}(A):

adj(2)=2n1=23.|\operatorname{adj}(2)| = 2^{n-1} = 2^3.

Thus:

3adj(2adj(AA))=33×23×A4×A4=33×23×A8.|3\operatorname{adj}(2\operatorname{adj}(|A|A))| = 3^3 \times 2^3 \times |A|^4 \times |A|^4 = 3^3 \times 2^3 \times |A|^8.

Given:

3adj(2adj(AA))=210×313.|3\operatorname{adj}(2\operatorname{adj}(|A|A))| = 2^{-10} \times 3^{-13}.

Equating powers of 22 and 33:

23×A8=210,33×A8=313.2^3 \times |A|^8 = 2^{-10}, \quad 3^3 \times |A|^8 = 3^{-13}.

Solve for A|A|:

A=21×31.|A| = 2^{-1} \times 3^{-1}.

Step 2: Simplify 3adj(2A)|3\operatorname{adj}(2A)|

3adj(2A)=3×adj(2A)=32×adj(2)2×A2.|3\operatorname{adj}(2A)| = |3| \times |\operatorname{adj}(2A)| = 3^2 \times |\operatorname{adj}(2)|^2 \times |A|^2. 3adj(2A)=32×22×(21×31)2=24×31.|3\operatorname{adj}(2A)| = 3^2 \times 2^2 \times (2^{-1} \times 3^{-1})^2 = 2^4 \times 3^1.

Step 3: Compute 3m+2n|3m + 2n|

Given A=2m3n|A| = 2^m \cdot 3^n, substitute m=4m = -4, n=1n = -1:

3m+2n=3(4)+2(1)=122=14.3m + 2n = 3(-4) + 2(-1) = -12 - 2 = -14. 3m+2n=14.|3m + 2n| = 14.