Question
Question: Let \(A\) be a matrix such that \(A\left[ {\begin{array}{*{20}{c}} 1&2 \\\ 0&3 \end{arra...
Let A be a matrix such that A\left[ {\begin{array}{*{20}{c}}
1&2 \\\
0&3
\end{array}} \right] is a scalar matrix and ∣3A∣=108 . Then A2 equals:
A) \left[ {\begin{array}{*{20}{c}}
4&{ - 32} \\\
0&{36}
\end{array}} \right]
B) \left[ {\begin{array}{*{20}{c}}
4&0 \\\
{ - 32}&{36}
\end{array}} \right]
C) \left[ {\begin{array}{*{20}{c}}
{36}&0 \\\
{ - 32}&4
\end{array}} \right]
D) \left[ {\begin{array}{*{20}{c}}
{36}&{ - 32} \\\
0&4
\end{array}} \right]
Solution
We have given that the product of the matrices is a scalar matrix, we will use this fact and multiply both sides by the inverse of the given matrix. Then we will find the required matrix in general terms. Later we will use the other given condition to find the unknown.
Complete step-by-step answer:
It is given that the product A\left[ {\begin{array}{*{20}{c}}
1&2 \\\
0&3
\end{array}} \right] is a scalar matrix.
Let us assume that the product is A\left[ {\begin{array}{*{20}{c}}
1&2 \\\
0&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
x&0 \\\
0&x;
\end{array}} \right] where x is a real number.
If \left[ {\begin{array}{*{20}{c}}
a&d; \\\
b&c;
\end{array}} \right] is a 2×2 matrix then the inverse of the matrix is given by \dfrac{1}{{ac - bd}}\left[ {\begin{array}{*{20}{c}}
c&{ - d} \\\
{ - b}&a;
\end{array}} \right] .
Let us assume that the matrix B = \left[ {\begin{array}{*{20}{c}}
1&2 \\\
0&3
\end{array}} \right] then {B^{ - 1}} = \dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\\
0&1
\end{array}} \right].
Now we already have assumed the following:
⇒ A\left[ {\begin{array}{*{20}{c}}
1&2 \\\
0&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
x&0 \\\
0&x;
\end{array}} \right]
Post multiply by B−1 on both sides:
⇒ A\left[ {\begin{array}{*{20}{c}}
1&2 \\\
0&3
\end{array}} \right]\left( {\dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\\
0&1
\end{array}} \right]} \right) = \left[ {\begin{array}{*{20}{c}}
x&0 \\\
0&x;
\end{array}} \right]\left( {\dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\\
0&1
\end{array}} \right]} \right)
Therefore, the matrix A is given as follows:
⇒ A = \left[ {\begin{array}{*{20}{c}}
x&0 \\\
0&x;
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{\dfrac{{ - 2}}{3}} \\\
0&{\dfrac{1}{3}}
\end{array}} \right]
On completing the multiplication, we get,
\Rightarrow$$$A = \left[ {\begin{array}{*{20}{c}}
x&{\dfrac{{ - 2x}}{3}} \\\
0&{\dfrac{x}{3}}
\end{array}} \right]$$
If we take determinant of the above matrix then we get,
\left| A \right| = \dfrac{{{x^2}}}{3}………….…(1)Anotherconditiongivenisthat\left| {3A} \right| = 108.NotethatforanymatrixA,\left| {kA} \right| = {k^n}\left| A \right|.Wewillputk = 3andn = 2thenweget,\Rightarrow\left| {3A} \right| = 9\left| A \right|Substitutingequation(1)weget,\Rightarrow\left| {3A} \right| = 9\left( {\dfrac{{{x^2}}}{3}} \right)Fromthegivenconditionwecanwrite:\Rightarrow3{x^2} = 108Therefore,thevalueofxisgivenbyx = \pm 6.Hence,thematrixAisgivenby:\RightarrowA = \left[ {\begin{array}{{20}{c}}
6&{ - 4} \\
0&2
\end{array}} \right]Nowtheproduct{A^2}isgivenby:\Rightarrow{A^2} = \left[ {\begin{array}{{20}{c}}
6&{ - 4} \\
0&2
\end{array}} \right]\left[ {\begin{array}{{20}{c}}
6&{ - 4} \\
0&2
\end{array}} \right]Multiplyingweget,\Rightarrow{A^2} = \left[ {\begin{array}{{20}{c}}
{36}&{ - 32} \\
0&4
\end{array}} \right]$
Hence, the correct option is D.
Note: Identity matrix of a particular size is the matrix with 1 on the main diagonal and 0 in the remaining places. Determinant of an Identity matrix is always equal to 1. If any two rows or columns of a determinant are equal then the determinant value will be equal to 0.