Solveeit Logo

Question

Mathematics Question on Matrices

Let AA be a matrix such that A2=IA^2 = I, where II is an identity matrix. Then (I+A)48A(I + A)^4 - 8A is equal to:

A

8I8 I

B

5I5 I

C

8(I + A)

D

5(I - A)

Answer

8I8 I

Explanation

Solution

Given A2=IA^2 = I, the identity matrix, we analyze (I+A)4(I + A)^4:

(I+A)2=I2+2IA+A2=I+2A+I=2I+2A(I + A)^2 = I^2 + 2IA + A^2 = I + 2A + I = 2I + 2A

(I+A)4=((I+A)2)2=(2I+2A)2(I + A)^4 = ((I + A)^2)^2 = (2I + 2A)^2

Expanding (2I+2A)2(2I + 2A)^2:

(2I+2A)2=4I2+8IA+4A2(2I + 2A)^2 = 4I^2 + 8IA + 4A^2

Since A2=IA^2 = I, substitute 4A2=4I4A^2 = 4I:

(2I+2A)2=4I+8A+4I=8I+8A(2I + 2A)^2 = 4I + 8A + 4I = 8I + 8A

Now compute (I+A)48A(I + A)^4 - 8A:

(I+A)48A=(8I+8A)8A=8I(I + A)^4 - 8A = (8I + 8A) - 8A = 8I

Thus, the result is: 8I8I