Solveeit Logo

Question

Mathematics Question on Matrices

Let A be a matrix of order 2 × 2, whose entries are from the set {0, 1, 3, 4, 5}. If the sum of all the entries of A is a prime number p, 2<p<82 < p < 8, then the number of such matrices A is ___________.

Answer

Sum of all entries of matrix A must be prime p such that 2<p<82<p<8 then sum of entries may be 3, 5 or 7.
If sum is 3 then possible entries are (0,0,0,3),(0,0,1,2)(0, 0, 0, 3), (0, 0, 1, 2) or (0,1,1,1).(0, 1, 1, 1).
Total number of matrices =4+4+12=20= 4+4+12=20
If sum of 5 then possible entries are
(0,0,0,5),(0,0,1,4),(0,0,2,3),(0,1,1,3),(0,1,2,2) and (1,1,1,2).(0, 0, 0, 5), (0, 0, 1, 4), (0, 0, 2, 3), (0, 1, 1, 3), (0, 1, 2, 2) \ and\ (1, 1, 1, 2).
Total number of matrices =4+12+12+12+12+4=56= 4+12+12+12+12+4=56
If sum is 7 then possible entries are
(0,0,2,5),(0,0,3,4),(0,1,1,5),(0,3,3,1),(0,2,2,3),(1,1,1,4),(1,2,2,2),(1,1,2,3)(0, 0, 2, 5), (0, 0, 3, 4), (0, 1, 1, 5), (0, 3, 3, 1), (0, 2, 2, 3), (1, 1, 1, 4), (1, 2, 2, 2), (1, 1, 2, 3) and (0,1,2,4)(0, 1, 2, 4)
Total number of matrices with sum 7=1047=104
Total number of required matrices=20+56+104=180= 20+56+104=180