Question
Mathematics Question on Transpose of a Matrix
Let A be a 3×3 real matrix such that A1\1 0=1\1 0; A1\0 1=A−1\0 1 and A0\0 1=1\1 2
If X=[x1,x2,x3]Tand I is an identity matrix of order 3, then the system [A−2I]X= 4\1 1 has:
No solution
Infinitely many solutions
Unique solution
Exactly two solutions
Infinitely many solutions
Solution
A=a\[0.3em]d\[0.3em]gbehcfi
A1\[0.3em]1\[0.3em]0=1\[0.3em]1\[0.3em]0⇒a\[0.3em]d\[0.3em]gbehcfi=1\[0.3em]1\[0.3em]0
⇒a+b=1
⇒d+e=1
⇒g+h=0
A1\[0.3em]0\[0.3em]1=−1\[0.3em]0\[0.3em]1⇒ a\[0.3em]d\[0.3em]gbehcfi 1\[0.3em]0\[0.3em]1=−1\[0.3em]0\[0.3em]1
⇒a+c=−1
⇒d+f=0
⇒g+i=1
A0\[0.3em]0\[0.3em]1=1\[0.3em]1\[0.3em]2 ⇒ \begin{bmatrix} a & b & c \\\[0.3em] d & e & f \\\[0.3em] g & h & i \end{bmatrix}$$\begin{bmatrix} 0 \\\[0.3em]0 \\\[0.3em] 1 \end{bmatrix}=
⇒c=1
⇒f=1
⇒i=2
On solving,
a=–2,b=3,c=1,d=–1,e=2,f=1,g=–1,h=1,i=2
A=−2\[0.3em]−1\[0.3em]−1321112 ⇒A=2I −4\[0.3em]−1\[0.3em]−1301110
(A−2I)x=$$\begin{bmatrix} 4 \\\[0.3em]1 \\\[0.3em] 1 \end{bmatrix}
⇒–4x1\+3x2+x3=4 …(i)
⇒–x1+x3=1 …(ii)
⇒–x1+x2=1 …(iii)
So 3(iii) + (ii) = (i)
∴ Infinite solution
So, the correct option (B): Infinitely many solutions.