Solveeit Logo

Question

Mathematics Question on Transpose of a Matrix

Let A be a 3×33×3 real matrix such that A(1\1 0)A\begin{pmatrix} 1 \\\1 \\\ 0 \end{pmatrix}=(1\1 0)\begin{pmatrix} 1 \\\1 \\\ 0 \end{pmatrix}; A(1\0 1)A\begin{pmatrix} 1 \\\0 \\\ 1 \end{pmatrix}=A(1\0 1)A\begin{pmatrix} -1 \\\0 \\\ 1 \end{pmatrix} and A(0\0 1)A\begin{pmatrix} 0 \\\0 \\\ 1 \end{pmatrix}=(1\1 2)\begin{pmatrix} 1 \\\1 \\\ 2 \end{pmatrix}
If X=[x1,x2,x3]TX = [x_1, x_2, x_3]^T and II is an identity matrix of order 33, then the system [A2I]X[A−2I]X = (4\1 1)\begin{pmatrix} 4 \\\1 \\\ 1 \end{pmatrix} has:

A

No solution

B

Infinitely many solutions

C

Unique solution

D

Exactly two solutions

Answer

Infinitely many solutions

Explanation

Solution

A=[abc\[0.3em]def\[0.3em]ghi]A = \begin{bmatrix} a & b & c \\\[0.3em] d & e & f \\\[0.3em] g & h & i \end{bmatrix}
A[1\[0.3em]1\[0.3em]0]A\begin{bmatrix} 1 \\\[0.3em]1 \\\[0.3em] 0 \end{bmatrix}=[1\[0.3em]1\[0.3em]0]\begin{bmatrix} 1 \\\[0.3em]1 \\\[0.3em] 0 \end{bmatrix}[abc\[0.3em]def\[0.3em]ghi]\begin{bmatrix} a & b & c \\\[0.3em] d & e & f \\\[0.3em] g & h & i \end{bmatrix}=[1\[0.3em]1\[0.3em]0]\begin{bmatrix} 1 \\\[0.3em]1 \\\[0.3em] 0 \end{bmatrix}
a+b=1⇒ a+b=1
d+e=1⇒ d+e=1
g+h=0⇒ g+h=0
A[1\[0.3em]0\[0.3em]1]A\begin{bmatrix} 1 \\\[0.3em]0 \\\[0.3em] 1 \end{bmatrix}=[1\[0.3em]0\[0.3em]1]\begin{bmatrix} -1 \\\[0.3em]0 \\\[0.3em] 1 \end{bmatrix}[abc\[0.3em]def\[0.3em]ghi]\begin{bmatrix} a & b & c \\\[0.3em] d & e & f \\\[0.3em] g & h & i \end{bmatrix} [1\[0.3em]0\[0.3em]1]\begin{bmatrix} 1 \\\[0.3em]0 \\\[0.3em] 1 \end{bmatrix}=[1\[0.3em]0\[0.3em]1]\begin{bmatrix} -1 \\\[0.3em]0 \\\[0.3em] 1 \end{bmatrix}
a+c=1⇒ a+c=−1
d+f=0⇒ d+f=0
g+i=1⇒ g+i=1
A[0\[0.3em]0\[0.3em]1]A\begin{bmatrix} 0 \\\[0.3em]0 \\\[0.3em] 1 \end{bmatrix}=[1\[0.3em]1\[0.3em]2]\begin{bmatrix} 1 \\\[0.3em]1 \\\[0.3em] 2 \end{bmatrix}\begin{bmatrix} a & b & c \\\[0.3em] d & e & f \\\[0.3em] g & h & i \end{bmatrix}$$\begin{bmatrix} 0 \\\[0.3em]0 \\\[0.3em] 1 \end{bmatrix}=
c=1⇒c=1
f=1⇒f=1
i=2⇒ i=2
On solving,
a=2,b=3,c=1,d=1,e=2,f=1,g=1,h=1,i=2a = –2, b = 3, c = 1, d = –1, e = 2, f = 1, g = –1,h = 1, i = 2
A=[231\[0.3em]121\[0.3em]112]A = \begin{bmatrix} -2 & 3 & 1 \\\[0.3em] -1 & 2 & 1 \\\[0.3em] -1& 1 & 2 \end{bmatrix} A=2I⇒ A=2I [431\[0.3em]101\[0.3em]110]\begin{bmatrix} -4 & 3 & 1 \\\[0.3em] -1 & 0 & 1 \\\[0.3em] -1& 1 & 0 \end{bmatrix}
(A−2I)x=$$\begin{bmatrix} 4 \\\[0.3em]1 \\\[0.3em] 1 \end{bmatrix}
4x1\+3x2+x3=4⇒ –4x_1 \+ 3x_2 + x_3 = 4 …(i)
x1+x3=1⇒ –x_1 + x_3 = 1 …(ii)
x1+x2=1⇒ –x_1 + x_2 = 1 …(iii)
So 3(iii) + (ii) = (i)
∴ Infinite solution

So, the correct option (B): Infinitely many solutions.