Solveeit Logo

Question

Question: Let A be a 3 x 3 matrix such that $X^T AX = O$ for all nonzero 3 x 1 matrices $X = \begin{bmatrix} x...

Let A be a 3 x 3 matrix such that XTAX=OX^T AX = O for all nonzero 3 x 1 matrices X=[xyz]X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}. If A[111]=[145]A\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix}, A[121]=[048]A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -8 \end{bmatrix}, and det(adj(2(A+1)))2α3β5γ,α,β,γNdet(adj(2(A + 1))) - 2^\alpha 3^\beta 5^\gamma, \alpha, \beta, \gamma \in N, then α2+β2+γ2\alpha^2 + \beta^2 + \gamma^2 is ____.

Answer

44

Explanation

Solution

Since XTAX=0X^TAX=0 for all XX, AA is skew-symmetric.

Solve using given conditions to find a=1a=-1, b=2b=2, c=3c=3.

Compute A+IA+I and then det(2(A+I))=120\det(2(A+I))=120.

Use det(adj(M))=(detM)2\det(\operatorname{adj}(M))=(\det M)^2 to get 14400=26325214400=2^6\cdot3^2\cdot5^2.

Finally, α2+β2+γ2=36+4+4=44\alpha^2+\beta^2+\gamma^2=36+4+4=44.