Solveeit Logo

Question

Mathematics Question on Matrices

Let A be a 3 × 3 invertible matrix. If |adj (24A)| = |adj (3 adj (2A))|, then |A|2 is equal to :

A

66

B

212

C

26

D

1

Answer

66

Explanation

Solution

The correct answer is (C) : 26
adj(24A)=adj(3adj(24A))|adj(24A)|=|adj(3adj(24A))|
24A2=3adj(2A)2⇒ |24A|^2=|3adj(2A)|^2
(243)2A2=(33)2adj(2A)2⇒(24^3)^2⋅|A|^2=(3^3)^2|adj(2A)|^2
246A2=362A4⇒24^6⋅|A|^2=3^6|2A|^4
246A2=36(23)4A4⇒24^6|A|^2=3^6⋅(2^3)^4|A|^4
A2=24636.212=218.3636.212=26⇒|A|^2=\frac{24^6}{3^6.2^{12}}=\frac{2^{18}.3^6}{3^6.2^{12}}=2^6