Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Let AA be a 3×33 \times 3 matrix of non-negative real elements such that A[1 1 1]=3[1 1 1].A \begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix}.Then the maximum value of det(A)\det(A) is _____

Answer

Let AA be a 3×33 \times 3 matrix:
A=[a1a2a3 b1b2b3 c1c2c3]A = \begin{bmatrix} a_1 & a_2 & a_3 \\\ b_1 & b_2 & b_3 \\\ c_1 & c_2 & c_3 \end{bmatrix}

Given that:
A[1 1 1]=3[1 1 1]A \begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix}
This implies: a1+a2+a3=3(1)a_1 + a_2 + a_3 = 3 \quad \dots (1)
b1+b2+b3=3(2)b_1 + b_2 + b_3 = 3 \quad \dots (2)
c1+c2+c3=3(3)c_1 + c_2 + c_3 = 3 \quad \dots (3)

Now, we want to maximize det(A)\det(A):
det(A)=a1b2c3+a2b3c1+a3b1c2(a3b2c1+a1b3c2+a2b1c3).\det(A) = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - (a_3b_2c_1 + a_1b_3c_2 + a_2b_1c_3).

To achieve the maximum value, we set a1=b2=c3=3a_1 = b_2 = c_3 = 3 and all other elements to zero:
det(A)=3×3×3=27.\det(A) = 3 \times 3 \times 3 = 27.
Thus, the maximum value of det(A)\det(A) is:
2727