Solveeit Logo

Question

Mathematics Question on Determinants

Let AA be a 3×33 \times 3 matrix and det(A)=2\det(A) = 2. If n=det(adj(adj((adj(A)))))n = \det(\text{adj}(\text{adj}(\ldots(\text{adj}(A))\ldots))) with adjoint applied 2024 times, then the remainder when nn is divided by 9 is equal to \\_\\_\\_\\_\\_.

Answer

22024=(22)2022=4(8)674=4(91)674.2^{2024} = (2^2)^{2022} = 4 \cdot (8)^{674} = 4 \cdot (9 - 1)^{674}.

Applying modulo 9, we get:

220244(mod9).2^{2024} \equiv 4 \pmod{9}.

Thus,

22024=9m+4,m is even.2^{2024} = 9m + 4, \quad m \text{ is even}.

Now, consider 29m+42^{9m+4}:

29m+4=16(23)3m16(mod9).2^{9m+4} = 16 \cdot (2^3)^{3m} \equiv 16 \pmod{9}.

Thus,

=7.= 7.

Therefore, the answer is:

7\.