Solveeit Logo

Question

Mathematics Question on Matrices

Let A be a 2×22×2 matrix with det(A)=1det (A) = –1 and det((A+I)(Adj(A)+I))=4det((A + I) (Adj (A) + I)) = 4. Then the sum of the diagonal elements of A can be

A

1-1

B

22

C

11

D

2-\sqrt 2

Answer

22

Explanation

Solution

(A+I)(adj A+I)=4|(A+I)(adj\ A+I)|=4
A adj A+A+adj A+I=4⇒|A\ adj\ A +A+adj \ A+I|=4
(A)I+A+adj A+I=4⇒|(A)I+A+adj\ A+I|=4
A=1|A|=−1
A+adj A=4⇒|A+adj\ A|=4
A=[ab\[0.3em]cd\[0.3em]]A=\begin{bmatrix} a & b\\\[0.3em] c & d \\\[0.3em] \end{bmatrix}

adjA=[ab\[0.3em]cd\[0.3em]]adj A=\begin{bmatrix} a & -b\\\[0.3em] -c & d \\\[0.3em] \end{bmatrix}

[(a+d)b\[0.3em]0(a+d)\[0.3em]]=4⇒ \begin{bmatrix} (a+d) & b\\\[0.3em] 0 & (a+d) \\\[0.3em] \end{bmatrix}=4
a+d=±2⇒ a + d = ±2

So, the correct option is (B): 22