Solveeit Logo

Question

Question: Let A be a 2 x 2 matrix, and suppose that $A^2$ = 0. Then for each scalar c, det(cI - A) = $c^x$. Fi...

Let A be a 2 x 2 matrix, and suppose that A2A^2 = 0. Then for each scalar c, det(cI - A) = cxc^x. Find x.

Answer

2

Explanation

Solution

To solve this problem, we will use properties of 2x2 matrices, including the characteristic polynomial, trace, determinant, and the Cayley-Hamilton theorem.

Let A be a 2x2 matrix. Its characteristic polynomial is given by: P(λ)=det(AλI)=λ2tr(A)λ+det(A)P(\lambda) = \det(A - \lambda I) = \lambda^2 - \text{tr}(A)\lambda + \det(A)

We are asked to find xx such that det(cIA)=cx\det(cI - A) = c^x. Note that det(cIA)=det((AcI))=(1)2det(AcI)=det(AcI)\det(cI - A) = \det(-(A - cI)) = (-1)^2 \det(A - cI) = \det(A - cI). So, det(cIA)\det(cI - A) is simply the characteristic polynomial evaluated at λ=c\lambda = c: det(cIA)=c2tr(A)c+det(A)\det(cI - A) = c^2 - \text{tr}(A)c + \det(A)

Now, let's use the given condition A2=0A^2 = 0. According to the Cayley-Hamilton theorem, every square matrix satisfies its own characteristic equation. For a 2x2 matrix A, this means: A2tr(A)A+det(A)I=0A^2 - \text{tr}(A)A + \det(A)I = 0

Substitute the given condition A2=0A^2 = 0 into this equation: 0tr(A)A+det(A)I=00 - \text{tr}(A)A + \det(A)I = 0 tr(A)A=det(A)I\text{tr}(A)A = \det(A)I

We need to consider two cases for matrix A:

Case 1: A is the zero matrix. If A=(0000)A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, then A2=0A^2 = 0 is trivially true. In this case, tr(A)=0+0=0\text{tr}(A) = 0 + 0 = 0 and det(A)=(0)(0)(0)(0)=0\det(A) = (0)(0) - (0)(0) = 0. Substitute these values into the expression for det(cIA)\det(cI - A): det(cIA)=c2(0)c+0=c2\det(cI - A) = c^2 - (0)c + 0 = c^2 Comparing this with det(cIA)=cx\det(cI - A) = c^x, we get cx=c2c^x = c^2, which implies x=2x=2.

Case 2: A is a non-zero matrix. From the equation tr(A)A=det(A)I\text{tr}(A)A = \det(A)I: If tr(A)0\text{tr}(A) \neq 0, then we can write A=det(A)tr(A)IA = \frac{\det(A)}{\text{tr}(A)}I. Let k=det(A)tr(A)k = \frac{\det(A)}{\text{tr}(A)}. So, A=kI=(k00k)A = kI = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}. Now, calculate A2A^2: A2=(kI)2=k2I=(k200k2)A^2 = (kI)^2 = k^2I = \begin{pmatrix} k^2 & 0 \\ 0 & k^2 \end{pmatrix}. Given that A2=0A^2 = 0, we have k2I=0k^2I = 0. Since I0I \neq 0, it must be that k2=0k^2 = 0, which implies k=0k=0. If k=0k=0, then A=0I=0A = 0 \cdot I = 0, which contradicts our assumption that A is a non-zero matrix. Therefore, if A is a non-zero matrix and A2=0A^2=0, it must be that tr(A)=0\text{tr}(A)=0.

Now, if tr(A)=0\text{tr}(A)=0, the equation tr(A)A=det(A)I\text{tr}(A)A = \det(A)I becomes: 0A=det(A)I0 \cdot A = \det(A)I 0=det(A)I0 = \det(A)I Since I0I \neq 0, it must be that det(A)=0\det(A)=0.

So, for any 2x2 matrix A such that A2=0A^2=0 (whether A is zero or non-zero), we must have tr(A)=0\text{tr}(A)=0 and det(A)=0\det(A)=0.

Substitute these values into the expression for det(cIA)\det(cI - A): det(cIA)=c2tr(A)c+det(A)\det(cI - A) = c^2 - \text{tr}(A)c + \det(A) det(cIA)=c2(0)c+0\det(cI - A) = c^2 - (0)c + 0 det(cIA)=c2\det(cI - A) = c^2

Given that det(cIA)=cx\det(cI - A) = c^x. Comparing the two expressions, we get cx=c2c^x = c^2. Therefore, x=2x=2.