Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Let AA be a 2×22 \times 2 symmetric matrix such that A[1 1]=[3 7]A \begin{bmatrix} 1 \\\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\\ 7 \end{bmatrix} and the determinant of AA be 1. If A1=αA+βIA^{-1} = \alpha A + \beta I, where II is the identity matrix of order 2×22 \times 2, then α+β\alpha + \beta equals \dots.

Answer

Let

A=[ab bd]A = \begin{bmatrix} a & b \\\ b & d \end{bmatrix}.

From the given condition, we have:

A[1 1]=[3 7],A \begin{bmatrix} 1 \\\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\\ 7 \end{bmatrix},

which gives:

a+b=3,b+d=7a + b = 3, \quad b + d = 7.

Also, the determinant of AA is given by adb2=1ad - b^2 = 1.

Using a+b=3a + b = 3 and b+d=7b + d = 7, we can solve these equations. Let's set up the system:

  1. From a+b=3a + b = 3, we get a=3ba = 3 - b.
  2. Substitute into b+d=7b + d = 7 to find d=7bd = 7 - b.
  3. Substitute a=3ba = 3 - b and d=7bd = 7 - b into adb2=1ad - b^2 = 1: (3b)(7b)b2=1.(3 - b)(7 - b) - b^2 = 1.

Expanding and simplifying, we get:

2110b+b2b2=1    2110b=1    b=221 - 10b + b^2 - b^2 = 1 \implies 21 - 10b = 1 \implies b = 2.

Then, a=1a = 1 and d=5d = 5.

Thus, we have: A=[12 25].A = \begin{bmatrix} 1 & 2 \\\ 2 & 5 \end{bmatrix}.

Now, we find A1A^{-1}:

A1=11(5)(2)(2)[52 21]=[52 21].A^{-1} = \frac{1}{1(5) - (2)(2)} \begin{bmatrix} 5 & -2 \\\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\\ -2 & 1 \end{bmatrix}.

Since A1=αA+βIA^{-1} = \alpha A + \beta I, we equate:

[52 21]=[α+β2α 2α5α+β].\begin{bmatrix} 5 & -2 \\\ -2 & 1 \end{bmatrix} = \begin{bmatrix} \alpha + \beta & 2\alpha \\\ 2\alpha & 5\alpha + \beta \end{bmatrix}.

This gives the system:

  • α+β=5\alpha + \beta = 5,
  • 2α=2    α=12\alpha = -2 \implies \alpha = -1,
  • 5α+β=15\alpha + \beta = 1.

Solving, we find β=6\beta = 6.

Thus, α+β=5\alpha + \beta = 5.

Answer: 5.