Solveeit Logo

Question

Mathematics Question on Matrices

Let AA be a 2×22 \times 2 real matrix and II be the identity matrix of order 2. If the roots of the equation AxI=0|A - xI| = 0 be 1-1 and 33, then the sum of the diagonal elements of the matrix A2A^2 is .....

Answer

We are given a 2×22 \times 2 matrix AA whose eigenvalues are 1-1 and 33. We aim to determine the sum of the diagonal elements of A2A^2, which is equivalent to the trace of A2A^2.

The eigenvalues of a matrix provide useful information:
- The sum of the eigenvalues is equal to the trace of the matrix AA:
Sum of roots (eigenvalues)=tr(A)=1+3=2.\text{Sum of roots (eigenvalues)} = \text{tr}(A) = -1 + 3 = 2.

- The product of the eigenvalues is equal to the determinant of the matrix AA:
Product of roots (eigenvalues)=det(A)=(1)(3)=3.\text{Product of roots (eigenvalues)} = |\det(A)| = (-1)(3) = -3.

Thus, the matrix AA satisfies:
a+d=2,adbc=3,a + d = 2, \quad ad - bc = -3,
where A=[ab cd]A = \begin{bmatrix} a & b \\\ c & d \end{bmatrix}.

The trace of a matrix is the sum of its diagonal elements. For A2A^2, the trace is:
tr(A2)=(A2)11+(A2)22.\text{tr}(A^2) = (A^2)_{11} + (A^2)_{22}.

Using matrix multiplication, compute A2A^2:
A2=[ab cd]2=[a2+bcab+bd ac+cdd2+bc].A^2 = \begin{bmatrix} a & b \\\ c & d \end{bmatrix}^2 = \begin{bmatrix} a^2 + bc & ab + bd \\\ ac + cd & d^2 + bc \end{bmatrix}.

The diagonal elements of A2A^2 are:
(A2)11=a2+bc,(A2)22=d2+bc.(A^2)_{11} = a^2 + bc, \quad (A^2)_{22} = d^2 + bc.

Thus, the trace of A2A^2 is:
tr(A2)=(A2)11+(A2)22=a2+bc+d2+bc=a2+d2+2bc.\text{tr}(A^2) = (A^2)_{11} + (A^2)_{22} = a^2 + bc + d^2 + bc = a^2 + d^2 + 2bc.

Using the properties of the matrix:
The trace of AA is a+d=2a + d = 2. From this, express a2+d2a^2 + d^2 using the square of the sum:
(a+d)2=a2+d2+2ad    a2+d2=(a+d)22ad.(a + d)^2 = a^2 + d^2 + 2ad \implies a^2 + d^2 = (a + d)^2 - 2ad.

Substitute a+d=2a + d = 2:
a2+d2=222ad=42ad.a^2 + d^2 = 2^2 - 2ad = 4 - 2ad.

The determinant of AA is adbc=3ad - bc = -3, which implies:
ad=3+bc.ad = -3 + bc.

Substitute ad=3+bcad = -3 + bc into a2+d2a^2 + d^2:
a2+d2=42(3+bc)=4+62bc=102bc.a^2 + d^2 = 4 - 2(-3 + bc) = 4 + 6 - 2bc = 10 - 2bc.

Thus:
tr(A2)=a2+d2+2bc=(102bc)+2bc=10.\text{tr}(A^2) = a^2 + d^2 + 2bc = (10 - 2bc) + 2bc = 10.

The Correct answer is: 10