Solveeit Logo

Question

Mathematics Question on Determinants

Let A be a 2×22 \times 2 matrix with non-zero entries and let A2=IA^2 = I, where I is 2×22 \times 2 identity matrix. Define Tr(A) = sum of diagonal elements of A and A|A| = determinant of matrix A. Tr(A)=0Tr(A) = 0 A=1|A| = 1

A

Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1

B

Statement-1 is true, Statement-2 is false

C

Statement-1 is false, Statement-2 is true

D

Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1

Answer

Statement-1 is true, Statement-2 is false

Explanation

Solution

Let A=(ab cd),abcd0A = \begin{pmatrix}a&b\\\ c&d\end{pmatrix}, abcd \ne 0 A2=(ab cd)(ab cd)A^{2} = \begin{pmatrix}a&b\\\ c&d\end{pmatrix}\cdot\begin{pmatrix}a&b\\\ c&d\end{pmatrix} A2=(a2+bcab+bd ac+cdbc+d2)\Rightarrow A^{2} = \begin{pmatrix}a^{2}+bc&ab+bd\\\ ac+cd&bc+d^{2}\end{pmatrix} a2+bc=1,bc+d2=1\Rightarrow a^{2} + bc = 1, bc + d^{2} = 1 ab+bd=ac+cd=0ab + bd = ac + cd = 0 c0c \ne 0 and b0a+d=0b \ne 0\quad \Rightarrow a + d = 0 Trace A=a+d=0A = a + d = 0 A=adbc=a2bc=1.|A| = ad - bc = -a^{2} - bc = -1.