Solveeit Logo

Question

Mathematics Question on Matrices

Let A be a 2×22 \times 2 matrix with det (A)=1( A )=-1 and det((A+I)(Adj(A)+I))=4\operatorname{det}(( A + I )(\operatorname{Adj}( A )+ I ))=4. Then the sum of the diagonal elements of A can be:

A

1-1

B

2

C

1

D

2-\sqrt{2}

Answer

2

Explanation

Solution

The correct option is (B) : 2
Given : Relation det ((A + I)(adj(A) + I)) = 4 , det (A) = -1,
Then, adj A = -A-1
| (A + I )A-1 + I | = 4
| -I + A - A-1 + I | =4
| A - A-1 | = 4
Let A =[ab cd]=\begin{bmatrix} a & b \\\ c & d \end{bmatrix} then A-1 = [db ca]\begin{bmatrix} -d & b \\\ c & -a \end{bmatrix}
| A - A-1 | = [a+d0 0d+a]=4\begin{bmatrix} a+d & 0 \\\ 0 & d+a \end{bmatrix}=4
(a + d)2 = 4
⇒ a + d = ± 2
⇒ | a + d | = 2