Solveeit Logo

Question

Quantitative Aptitude Question on Quadratic Equation

Let a, b, x, y be real numbers such that a2+b2=25,x2+y2=169,a^2+b^2=25,x^2+y^2=169, and ax+by=65.ax+by=65. If k=aybx,k= ay-bx, then

A

k=0

B

0<k5130<k≤\frac{5}{13}

C

k=513k=\frac{5}{13}

D

k>513k>\frac{5}{13}

Answer

k=0

Explanation

Solution

We can take a=5,b=0,x=13a=5, b=0, x=13 and y=0y=0 as values which satisfies all three equations.

Hence, k=aybx=5×00×13=0k=ay−bx=5×0−0×13=0