Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

Let (a,b)(0,2π)(a, b) \subset(0,2 \pi) be the largest interval for which sin1(sinθ)cos1(sinθ)>,θ(0,2π)\sin ^{-1}(\sin \theta)-\cos ^{-1}(\sin \theta)>, \theta \in(0,2 \pi), holds If αx2+βx+sin1(x26x+10)+cos1(x26x+10)=0\alpha x^2+\beta x+\sin ^{-1}\left(x^2-6 x+10\right)+\cos ^{-1}\left(x^2-6 x+10\right)=0 and αβ=ba\alpha-\beta=b-a, then α\alpha is equal to :

A

π8\frac{\pi}{8}

B

π48\frac{\pi}{48}

C

π16\frac{\pi}{16}

D

π12\frac{\pi}{12}

Answer

π12\frac{\pi}{12}

Explanation

Solution

sin−1sinθ−(2π​−sin−1sinθ)>0
⇒sin−1sinθ>4π​
⇒sinθ>2​1​
So, θ∈(4π​,43π​)
θ∈(4π​,43π​)=(a,b)
⇒b−a=2π​=α−β
⇒β=α−2π​
⇒αx2+βx+sin−1[(x−3)2+1]+cos−1[(x−3)2+1]=0
x=3,9α+3β+2π​+0=0
⇒9α+3(α−2π​)+2π​=0
⇒12α−π=0
α=12π​
So, the correct option is (D) : π12\frac{\pi}{12}