Question
Mathematics Question on Properties of Inverse Trigonometric Functions
Let (a,b)⊂(0,2π) be the largest interval for which sin−1(sinθ)−cos−1(sinθ)>,θ∈(0,2π), holds If αx2+βx+sin−1(x2−6x+10)+cos−1(x2−6x+10)=0 and α−β=b−a, then α is equal to :
A
8π
B
48π
C
16π
D
12π
Answer
12π
Explanation
Solution
sin−1sinθ−(2π−sin−1sinθ)>0
⇒sin−1sinθ>4π
⇒sinθ>21
So, θ∈(4π,43π)
θ∈(4π,43π)=(a,b)
⇒b−a=2π=α−β
⇒β=α−2π
⇒αx2+βx+sin−1[(x−3)2+1]+cos−1[(x−3)2+1]=0
x=3,9α+3β+2π+0=0
⇒9α+3(α−2π)+2π=0
⇒12α−π=0
α=12π
So, the correct option is (D) : 12π