Solveeit Logo

Question

Question: Let \(a,b \in R,(a \ne 0).\) If the function \(f\) defined as \[ f\left( x \right)=\left\\{\be...

Let a,bR,(a0).a,b \in R,(a \ne 0). If the function ff defined as

f\left( x \right)=\left\\{\begin{array}{ll} \dfrac{{2{x^2}}}{a},0 \leqslant x < 1 \\\ a,1 \leqslant x < \sqrt 2 \\\ \dfrac{{2{b^2} - 4b}}{{{x^3}}},\sqrt 2 \leqslant x < \infty \\\ \end{array} \right.

is continuous in the interval [0,)[0,\infty ), then the ordered pair (a,b)(a,b) is:
A. (2,13)( - \sqrt 2 ,1 - \sqrt 3 )
B. (2,1+3)(\sqrt 2 , - 1 + \sqrt 3 )
C. (2,1±3)\left( {\sqrt 2 ,1 \pm \sqrt 3 } \right)
D. (2,1+3)( - \sqrt 2 ,1 + \sqrt 3 )

Explanation

Solution

In this question, we are given that a,bR,(a0).a,b \in R,(a \ne 0). and also that f(x)f(x)is continuous in the given interval, so we use the definition of the continuous function.A function f is said to be continuous at point x=ax = a, if f(a)=f(a)=f(a+)f(a) = f(a - ) = f(a + ) Where, f(a)=limh0f(ah)f(a - ) = \mathop {\lim }\limits_{h \to 0} f(a - h) and f(a+)=limh0f(a+h)f(a + ) = \mathop {\lim }\limits_{h \to 0} f(a + h) and from this we will get the required values of a,ba,b.

Complete step-by-step answer:
Given a,bR,(a0).a,b \in R,(a \ne 0). f(x)f(x) is continuous in the interval.

f\left( x \right)=\left\\{\begin{array}{ll} \dfrac{{2{x^2}}}{a},0 \leqslant x < 1 \\\ a,1 \leqslant x < \sqrt 2 -------(1) \\\ \dfrac{{2{b^2} - 4b}}{{{x^3}}},\sqrt 2 \leqslant x < \infty \\\ \end{array} \right.

Here we are given that function is continuous in the interval [0,)[0,\infty ), but clearly looking at the definition of f(x)f(x) function, we can see that 1,21,\sqrt 2 are the two doubtful points.
We know that the function is said to be continuous at x=ax = a if,
f(a+)=f(a)=f(a)f(a + ) = f(a) = f(a - )
Now at x=1x = 1, we know that it is continuous so we can write that
f(1+)=f(1)=f(1)f(1 + ) = f(1) = f(1 - )
Firstly f(1)=af(1) = aby using (1)
Now, we will consider f(1)=limh0f(1h)f(1 - ) = \mathop {\lim }\limits_{h \to 0} f(1 - h).
And for this limit value we will take f(x)f(x) will be x<1x < 1
Now from (1) f(x)=2x2af(x) = \dfrac{{2{x^2}}}{a},
So,
f(1)=limh02(1h)2af(1 - ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{2{{(1 - h)}^2}}}{a}
=2a= \dfrac{2}{a}
So, we get f(1)=a=2a=f(1)f(1) = a = \dfrac{2}{a} = f(1 - )
a=±2a = \pm \sqrt 2 (2) - - - - - (2)
Now we also know that function is continuous at x=2x = \sqrt 2 , so
f(2+)=f(2)=f(2)f(\sqrt 2 + ) = f(\sqrt 2 ) = f(\sqrt 2 - )
Now
f(2)=2b24b(2)3f(\sqrt 2 ) = \dfrac{{2{b^2} - 4b}}{{{{(\sqrt 2 )}^3}}}
Now consider f(2+)=limh0f(2+h)f(\sqrt 2 + ) = \mathop {\lim }\limits_{h \to 0} f(\sqrt 2 + h)
And now for this limit value we will take f(x)f(x) for x>2x > \sqrt 2
So, from (1) f(x)=2b24bx3f(x) = \dfrac{{2{b^2} - 4b}}{{{x^3}}}.
Now, f(2+)=limh02b24b(2+h)3f(\sqrt 2 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{2{b^2} - 4b}}{{{{(\sqrt 2 + h)}^3}}}
=2b24b(2)3= \dfrac{{2{b^2} - 4b}}{{{{(\sqrt 2 )}^3}}}
f(2+)=b(b2)2f(\sqrt 2 + ) = \dfrac{{b(b - 2)}}{{\sqrt 2 }}
Now consider f(2)=limh0f(2h)f(\sqrt 2 - ) = \mathop {\lim }\limits_{h \to 0} f(\sqrt 2 - h)
So, for this limit value we will use the function f(x)f(x) for x<2x < \sqrt 2 .
Now from (1) f(x)=af(x) = a.
Now f(2)=af(\sqrt 2 - ) = a
Therefore f(2+)=b(b2)2f(\sqrt 2 + ) = \dfrac{{b(b - 2)}}{{\sqrt 2 }} =a=f(2) = a = f(\sqrt 2 - )
a2=b(b2)a\sqrt 2 = b(b - 2)
Now we also have a=±2a = \pm \sqrt 2
Using it we get that
b(b2)=±2b(b - 2) = \pm 2
Now we get
b(b2)=2b(b - 2) = 2 (3) - - - - - (3)
b(b2)=2b(b - 2) = - 2 (4) - - - - - - - (4)
Taking (3), we get
b22b2=0{b^2} - 2b - 2 = 0
By using the quadratic equation formula, we get that
b=2±4+4.22b = \dfrac{{2 \pm \sqrt {4 + 4.2} }}{2}
b=1±3b = 1 \pm \sqrt 3 (5) - - - - - - (5)
Taking (4), we get that
b22b+2=0{b^2} - 2b + 2 = 0
b=2±44.22b = \dfrac{{2 \pm \sqrt {4 - 4.2} }}{2}
b=2±42b = \dfrac{{2 \pm \sqrt { - 4} }}{2}
Hence it gets to us the non-real values.
Hence ordered pair is (2,1±3)\left( {\sqrt 2 ,1 \pm \sqrt 3 } \right)

So, the correct answer is “Option C”.

Note: In the above question, we have taken two terms f(1),f(1)f(1),f(1 - ) from the equation such that f(1+)=f(1)=f(1)f(1 + ) = f(1) = f(1 - ).This is not necessary to take f(1),f(1)f(1),f(1 - ) from the three, we can take any two and solve to get the value of aa or bb. Similarly, we have taken f(2),f(2+)f(\sqrt 2 - ),f(\sqrt 2 + ) from the equation such that f(2)=f(2)=f(2+)f(\sqrt 2 - ) = f(\sqrt 2 ) = f(\sqrt 2 + ).From the above equation, we can take any two values to make an equation and get the values of a,ba,b.