Solveeit Logo

Question

Mathematics Question on Mean and Variance of Random variables

Let a,bRa, b \in \mathbb{R}. Let the mean and the variance of 6 observations 3,4,7,6,a,b-3, 4, 7, -6, a, b be 2 and 23, respectively. The mean deviation about the mean of these 6 observations is:

A

133\frac{13}{3}

B

163\frac{16}{3}

C

113\frac{11}{3}

D

143\frac{14}{3}

Answer

133\frac{13}{3}

Explanation

Solution

Set Up the Equations for Mean and Variance:
Let the six observations be x1=3x_1 = -3, x2=4x_2 = 4, x3=7x_3 = 7, x4=6x_4 = -6, x5=ax_5 = a, and x6=bx_6 = b. Given that the mean of these observations is 2,

we have: 3+4+76+a+b6=2\frac{-3 + 4 + 7 - 6 + a + b}{6} = 2
Simplifying, we get: 2+a+b=12    a+b=102 + a + b = 12 \implies a + b = 10

Calculate the Variance:
The variance of the observations is given as 23. We know that:
Variance=i=16xi26(i=16xi6)2\text{Variance} = \frac{\sum_{i=1}^6 x_i^2}{6} - \left(\frac{\sum_{i=1}^6 x_i}{6}\right)^2
Substitute the mean (2) and solve for the sum of squares:
(3)2+42+72+(6)2+a2+b2622=23\frac{(-3)^2 + 4^2 + 7^2 + (-6)^2 + a^2 + b^2}{6} - 2^2 = 23
Calculating each term, we find:
9+16+49+36+a2+b264=23\frac{9 + 16 + 49 + 36 + a^2 + b^2}{6} - 4 = 23
Simplifying: 110+a2+b2=162    a2+b2=52110 + a^2 + b^2 = 162 \implies a^2 + b^2 = 52
Solve for aa and bb:
We now have two equations: a+b=10anda2+b2=52a + b = 10 \quad \text{and} \quad a^2 + b^2 = 52
Using the identity (a+b)2=a2+b2+2ab(a + b)^2 = a^2 + b^2 + 2ab:
102=52+2ab    100=52+2ab    ab=2410^2 = 52 + 2ab \implies 100 = 52 + 2ab \implies ab = 24
Solving these equations, we find a=4a = 4 and b=6b = 6 (or vice versa).

Calculate the Mean Deviation about the Mean:
The mean deviation about the mean (2) is given by:
x12+x22+x32+x42+x52+x626\frac{|x_1 - 2| + |x_2 - 2| + |x_3 - 2| + |x_4 - 2| + |x_5 - 2| + |x_6 - 2|}{6}
Substitute the values x1=3x_1 = -3, x2=4x_2 = 4, x3=7x_3 = 7, x4=6x_4 = -6, x5=4x_5 = 4, and x6=6x_6 = 6:
32+42+72+62+42+626=5+2+5+8+2+46=266=133\frac{| -3 - 2| + |4 - 2| + |7 - 2| + |-6 - 2| + |4 - 2| + |6 - 2|}{6} = \frac{5 + 2 + 5 + 8 + 2 + 4}{6} = \frac{26}{6} = \frac{13}{3}