Solveeit Logo

Question

Mathematics Question on Sequence and series

Let a,b,cRa, b, c \, \in \, R. If f(x)=ax2+bx+cf(x) = ax^2 + bx + c is such that a+b+c=3a + b + c = 3 and f(x+y)=f(x)+f(y)+xy,x,yR,f (x + y) = f (x) + f (y) + xy, \forall \, x, y \, \in \, R, then n=110f(n)\displaystyle\sum^{10}_{n = 1} f(n) is equal to :

A

165

B

190

C

255

D

330

Answer

330

Explanation

Solution

As, f(x+y)=f(x)+f(y)+xyf (x + y) = f (x) + f (y) + xy
Given, f(1)=3f (1) = 3
Putting, x=y=1x = y = 1
f(2)=2f(1)+1=7\Rightarrow f (2) = 2f (1) +1 = 7
Similarly, x=1,y=2x = 1, y = 2
f(3)=f(1)+f(2)+2=12\Rightarrow f (3) = f (1) + f (2) + 2 = 12
Now, n=110f(n)=f(1)+f(2)+f(3)+...+f(10)\displaystyle \sum_{n=1}^{10}f\left(n\right) = f \left(1\right) + f \left(2\right) + f \left(3\right) + ... + f \left(10\right)
=3+7+12+18+...=S= 3 + 7 +12 + 18 + ... = S (let)
Now, SnS_{n} = 3 + 7 + 12 + 18 + ... + tnt_{n}
Again, SnS_{n} = 3 + 7 + 12 + ... + tn1+tnt_{n-1} + t_{n}
We ge, tnt_{n} = 3 + 4 + 5+ ... n terms
=n(n+5)2= \frac{n\left(n+5\right)}{2}
i.e., S_{n} = \displaystyle \sum_{n=1}^{n}t_{n} = \frac{1}{2}\left\\{\sum n^{2}+5\sum n\right\\}
=n(n+1)(n+8)6= \frac{n\left(n+1\right)\left(n+8\right)}{6}
So, S10=10×11×186=330S_{10} = \frac{10\times11\times18}{6} = 330