Question
Mathematics Question on Sequence and series
Let a,b,c∈R. If f(x)=ax2+bx+c is such that a+b+c=3 and f(x+y)=f(x)+f(y)+xy,∀x,y∈R, then n=1∑10f(n) is equal to :
A
165
B
190
C
255
D
330
Answer
330
Explanation
Solution
As, f(x+y)=f(x)+f(y)+xy
Given, f(1)=3
Putting, x=y=1
⇒f(2)=2f(1)+1=7
Similarly, x=1,y=2
⇒f(3)=f(1)+f(2)+2=12
Now, n=1∑10f(n)=f(1)+f(2)+f(3)+...+f(10)
=3+7+12+18+...=S (let)
Now, Sn = 3 + 7 + 12 + 18 + ... + tn
Again, Sn = 3 + 7 + 12 + ... + tn−1+tn
We ge, tn = 3 + 4 + 5+ ... n terms
=2n(n+5)
i.e., S_{n} = \displaystyle \sum_{n=1}^{n}t_{n} = \frac{1}{2}\left\\{\sum n^{2}+5\sum n\right\\}
=6n(n+1)(n+8)
So, S10=610×11×18=330