Question
Question: Let \(a,b,c \in R\), if \(f\left( x \right) = a{x^2} + bx + c\) is such that \(a + b + c = 3\) and ...
Let a,b,c∈R, if f(x)=ax2+bx+c is such that a+b+c=3 and
f(x+y)=f(x)+f(y)+xy∀x,y∈R then n=1∑8f(n) is equal to
A.330
B.192
C.190
D.165
Solution
Hint : In this question there are two predefined functions. Firstf(x)=ax2+bx+c and f(x+y)=f(x)+f(y)+xy and value of a+b+c=3. So make sure that we start to put the values of x from 1 to 8. We will get a series of functions that will help to evaluate the next function value.
Complete step-by-step answer :
Given: a,b,c∈R, if f(x)=ax2+bx+c is such that a+b+c=3 and f(x+y)=f(x)+f(y)+xy∀x,y∈R then n=1∑8f(n)
Since, in the question f(x) is defined as f(x)=ax2+bx+c so to solve it follow the function definition so,
f(x)=ax2+bx+c and f(x+y)=f(x)+f(y)+xy
Now, n=1∑8f(n)=f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(8)+f(8)
∵f(1)=a(1)2+b(1)+c=a+b+c=3
f(2)=f(1+1)=f(1)+f(1)+1×1=3+3+1=7 (Using f(x+y)=f(x)+f(y)+xy)
f(3)=f(2+1)=f(2)+f(1)+2×1=7+3+2=12 f(4)=f(3+1)=f(3)+f(1)+3×1=12+3+3=18 f(5)=f(4+1)=f(4)+f(1)+4×1=18+3+4=25 f(6)=f(5+1)=f(5)+f(1)+5×1=25+3+5=33 f(7)=f(6+1)=f(6)+f(1)+6×1=33+3+6=42 f(8)=f(7+1)=f(7)+f(1)+7×1=42+3+7=52
Since, n=1∑8f(n)=3+7+12+18+25+33+42+52=192
Hence, n=1∑8f(n)=192
Hence option (b) is the correct answer.
So, the correct answer is “Option B”.
Note : In the question a student has to follow all the predefined functions and only have to put values according to the progressing way, and at last all the values for the final answer.