Solveeit Logo

Question

Mathematics Question on Mean Deviation

Let a,b,cNa, b, c \in \mathbb{N} and a<b<ca<b<c. Let the mean, the mean deviation about the mean and the variance of the 5 observations 9,25,a,b,c9, 25, a, b, c be 18,418, 4 and 1365\frac{136}{5}, respectively. Then 2a+bc2a + b - c is equal to _______.

Answer

Given:
Mean=9+25+a+b+c5=18.\text{Mean} = \frac{9 + 25 + a + b + c}{5} = 18.
Solving for a+b+ca + b + c:
a+b+c=56.a + b + c = 56.
The mean deviation about the mean is given by:
Mean deviation=xixˉn=4.\text{Mean deviation} = \frac{\sum |x_i - \bar{x}|}{n} = 4.
Substituting values:
918+2518+a18+b18+c18=20.|9 - 18| + |25 - 18| + |a - 18| + |b - 18| + |c - 18| = 20.
18a+18b+18c=4.|18 - a| + |18 - b| + |18 - c| = 4.
The variance is given by:
Variance=(xixˉ)2n=1365.\text{Variance} = \frac{\sum (x_i - \bar{x})^2}{n} = \frac{136}{5}.
Calculating:
(918)2+(2518)2+(a18)2+(b18)2+(c18)25=1365.\frac{(9 - 18)^2 + (25 - 18)^2 + (a - 18)^2 + (b - 18)^2 + (c - 18)^2}{5} = \frac{136}{5}.
Multiplying both sides by 5:
81+49+(18a)2+(18b)2+(18c)2=136.81 + 49 + (18 - a)^2 + (18 - b)^2 + (18 - c)^2 = 136.
Simplifying:
(18a)2+(18b)2+(18c)2=6.(18 - a)^2 + (18 - b)^2 + (18 - c)^2 = 6.
Possible values:
(18a)2=1,(18b)2=1,(18c)2=4.(18 - a)^2 = 1, \quad (18 - b)^2 = 1, \quad (18 - c)^2 = 4.
This gives:
18a=1    a=17,18b=1    b=19,18c=2    c=20.18 - a = 1 \implies a = 17, \quad 18 - b = -1 \implies b = 19, \quad 18 - c = -2 \implies c = 20.
Substituting:
a+b+c=17+19+20=56.a + b + c = 17 + 19 + 20 = 56.
Calculating 2a+bc2a + b - c:
2a+bc=2×17+1920=34+1920=33.2a + b - c = 2 \times 17 + 19 - 20 = 34 + 19 - 20 = 33.
Answer: 33.