Question
Mathematics Question on Mean Deviation
Let a,b,c∈N and a<b<c. Let the mean, the mean deviation about the mean and the variance of the 5 observations 9,25,a,b,c be 18,4 and 5136, respectively. Then 2a+b−c is equal to _______.
Given:
Mean=59+25+a+b+c=18.
Solving for a+b+c:
a+b+c=56.
The mean deviation about the mean is given by:
Mean deviation=n∑∣xi−xˉ∣=4.
Substituting values:
∣9−18∣+∣25−18∣+∣a−18∣+∣b−18∣+∣c−18∣=20.
∣18−a∣+∣18−b∣+∣18−c∣=4.
The variance is given by:
Variance=n∑(xi−xˉ)2=5136.
Calculating:
5(9−18)2+(25−18)2+(a−18)2+(b−18)2+(c−18)2=5136.
Multiplying both sides by 5:
81+49+(18−a)2+(18−b)2+(18−c)2=136.
Simplifying:
(18−a)2+(18−b)2+(18−c)2=6.
Possible values:
(18−a)2=1,(18−b)2=1,(18−c)2=4.
This gives:
18−a=1⟹a=17,18−b=−1⟹b=19,18−c=−2⟹c=20.
Substituting:
a+b+c=17+19+20=56.
Calculating 2a+b−c:
2a+b−c=2×17+19−20=34+19−20=33.
Answer: 33.