Solveeit Logo

Question

Question: Let a, b, c be three non-zero real numbers such that the equation \[\sqrt{3}a\cos x+2b\sin x=c\], \[...

Let a, b, c be three non-zero real numbers such that the equation 3acosx+2bsinx=c\sqrt{3}a\cos x+2b\sin x=c, x[π2,π2]x\in [\dfrac{-\pi }{2},\dfrac{\pi }{2}] , has two distinct real roots α\alpha and β\beta with α+β=π3\alpha +\beta =\dfrac{\pi }{3}. Then, the value of 2ba\dfrac{2b}{a} is _____.

Explanation

Solution

So here in this question First we will assume tanx2=t\tan \dfrac{x}{2}=t, and we know two basic trigonometric formulas
cosx=1tan2x21+tan2x2\cos x=\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} and similarly, sinx=2tanx21+tan2x2\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}
So, we can write 3acosx+2bsinx=c\sqrt{3}a\cos x+2b\sin x=c as 3a1t21+t2+2b2t1+t2=c\sqrt{3}a\dfrac{1-{{\operatorname{t}}^{2}}}{1+{{\operatorname{t}}^{2}}}+2b\dfrac{2\operatorname{t}}{1+{{\operatorname{t}}^{2}}}=c
Which on solving equals to t2(c+3a)4bt+c3a=0{{\operatorname{t}}^{2}}(c+\sqrt{3}a)-4bt+c-\sqrt{3}a=0
Whose two roots are tanα2,tanβ2\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2}
Now applying formula tan(α+β2)=tanα2+tanβ21tanα2tanβ2\tan (\dfrac{\alpha +\beta }{2})=\dfrac{\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}}{1-\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}} we get desired result

Complete step-by-step solution:
Given an equation 3acosx+2bsinx=c\sqrt{3}a\cos x+2b\sin x=c which has roots α\alpha and β\beta with α+β=π3\alpha +\beta =\dfrac{\pi }{3}.
To find value of 2ba\dfrac{2b}{a}, first of all, we have to use formula cosx=1tan2x21+tan2x2\cos x=\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} and similarly sinx=2tanx21+tan2x2\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}
And convert equation 3acosx+2bsinx=c\sqrt{3}a\cos x+2b\sin x=c to 3a1tan2x21+tan2x2+2b2tanx21+tan2x2=c\sqrt{3}a\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}+2b\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=c
Now assume tanx2=t\tan \dfrac{x}{2}=t and now replacing it in equation it will look like
3a1t21+t2+2b2t1+t2=c\sqrt{3}a\dfrac{1-{{\operatorname{t}}^{2}}}{1+{{\operatorname{t}}^{2}}}+2b\dfrac{2\operatorname{t}}{1+{{\operatorname{t}}^{2}}}=c which on solving looks like t2(c+3a)4bt+c3a=0{{\operatorname{t}}^{2}}(c+\sqrt{3}a)-4bt+c-\sqrt{3}a=0
Now this is a quadratic in t ,it was given that it x has two roots α\alpha and β\beta , so t has two roots tanα2,tanβ2\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2}
Using property for quadratic equation we can say x2(a)+bx+c=0{{x}^{2}}(a)+bx+c=0
Sum of roots equals to ba-\dfrac{b}{a} and product of roots equals to ca\dfrac{c}{a}, on applying
Sum of roots tanα2+tanβ2\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2} equals to ba-\dfrac{b}{a} and product tanα2×tanβ2\tan \dfrac{\alpha }{2}\times \tan \dfrac{\beta }{2} equals to ca\dfrac{c}{a}
tanα2+tanβ2=4bc+3aandtanα2×tanβ2=c3ac+3a...(2)\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}=\dfrac{4b}{c+\sqrt{3}a}and\tan \dfrac{\alpha }{2}\times \tan \dfrac{\beta }{2}=\dfrac{c-\sqrt{3}a}{c+\sqrt{3}a}...(2)
Now it is given α+β=π3\alpha +\beta =\dfrac{\pi }{3}, dividing by 2 both side we α+β2=π6\dfrac{\alpha +\beta }{2}=\dfrac{\pi }{6}
Now we can write it as tan(α+β2)=tanπ6\tan (\dfrac{\alpha +\beta }{2})=\tan \dfrac{\pi }{6}, now using formula tan(α+β2)=tanα2+tanβ21tanα2tanβ2\tan (\dfrac{\alpha +\beta }{2})=\dfrac{\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}}{1-\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}} and using equation (2)
We can write as
4bc+3a1c3ac+3a=tanπ6=13\dfrac{\dfrac{4b}{c+\sqrt{3}a}}{1-\dfrac{c-\sqrt{3}a}{c+\sqrt{3}a}}=\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}} , on further solving gives 4bc+3a(c3a)=tanπ6=13\dfrac{4b}{c+\sqrt{3}a-(c-\sqrt{3}a)}=\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}
After solving we get 4b23a=13\dfrac{4b}{2\sqrt{3}a}=\dfrac{1}{\sqrt{3}} which results into 2ba=1\dfrac{2b}{a}=1
Hence answer is 2ba=1\dfrac{2b}{a}=1.

Note: Some students have doubt that how to think that whether half angle formula to apply or not , look in this question 3acosx+2bsinx=c\sqrt{3}a\cos x+2b\sin x=c we have two roots α\alpha and β\beta
We have two different trigonometry’s cosx,sinx\cos x,\sin x so to convert the whole equation into one format we use half angle formula and convert into tanx2\tan \dfrac{x}{2}.