Solveeit Logo

Question

Question: Let a, b, c be real and \(a{{x}^{2}}+bx+c=0\) has two real roots, \(\alpha \) and \(\beta \) where \...

Let a, b, c be real and ax2+bx+c=0a{{x}^{2}}+bx+c=0 has two real roots, α\alpha and β\beta where α<1\alpha <-1 and β>1\beta >1, then show that ca+ba<y\dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-y and find yy.

Explanation

Solution

We will assume the roots α\alpha and β\beta as α+λ=1\alpha +\lambda =-1 and β=1+μ\beta =1+\mu \left\\{ \lambda ,\mu >0 \right\\}. We have the relation between the roots of the quadratic equation and the coefficients of the quadratic equation i.e. α+β=ba\alpha +\beta =\dfrac{-b}{a} and αβ=ca\alpha \beta =\dfrac{c}{a}. From the values of α\alpha and β\beta , known relationships between them we will calculate the value of ca+ba\dfrac{c}{a}+\left| \dfrac{b}{a} \right|. From the obtained value we will conclude the value of yy.

Complete step-by-step solution
Given that,
Let aa, bb, cc be real and ax2+bx+c=0a{{x}^{2}}+bx+c=0 has two real roots, α\alpha and β\beta
Let the values of α\alpha and β\beta are α+λ=1\alpha +\lambda =-1 , β=1+μ\beta =1+\mu α<1,β>1\because \alpha <-1,\beta >1 where \left\\{ \lambda ,\mu >0 \right\\}.
We have relation between the roots of the quadratic equation and the coefficients of the quadratic equation as
α+β=ba\alpha +\beta =\dfrac{-b}{a} and αβ=ca\alpha \beta =\dfrac{c}{a}
Now the value of ca+ba\dfrac{c}{a}+\left| \dfrac{b}{a} \right| can be calculated as
ca+ba=αβ+α+β\dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right|
The values of α\alpha from α+λ=1\alpha +\lambda =-1 is α=1λ\alpha =-1-\lambda . Substituting the values of α\alpha and β\beta in the above equation then we will get
ca+ba=αβ+α+β ca+ba=(1λ)(1+μ)+1λ+1+μ ca+ba=1μλλμ+μλ \begin{aligned} & \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right| \\\ & \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\left( -1-\lambda \right)\left( 1+\mu \right)+\left| -1-\lambda +1+\mu \right| \\\ & \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\left| \mu -\lambda \right| \\\ \end{aligned}
If μ>λ\mu >\lambda then
ca+ba=1μλλμ+μλ ca+ba=12λλμ ca+ba=1(2λ+λμ) \begin{aligned} & \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\mu -\lambda \\\ & \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\lambda -\lambda \mu \\\ & \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\lambda +\lambda \mu \right) \\\ \end{aligned}
For any value of μ\mu and λ\lambda the value of ca+ba\dfrac{c}{a}+\left| \dfrac{b}{a} \right| is always less than 1-1, mathematically
ca+ba<1\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1
Now comparing the above expression with the given expression ca+ba<y\dfrac{c}{a}+\left| \dfrac{b}{a} \right| <-y, then the value of yy is equal to 11.

Note: We can also take the assumption that λ>μ\lambda >\mu , then the value of ca+ba\dfrac{c}{a}+\left| \dfrac{b}{a} \right| is given by
ca+ba=1μλλμ+λμ ca+ba=12μλμ ca+ba=1(2μ+λμ) \begin{aligned} & \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\lambda -\mu \\\ & \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\mu -\lambda \mu \\\ & \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\mu +\lambda \mu \right) \\\ \end{aligned}
For any value of μ\mu and λ\lambda the value of ca+ba\dfrac{c}{a}+\left| \dfrac{b}{a} \right| is always less than 1-1, mathematically
ca+ba<1\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1