Solveeit Logo

Question

Question: Let A, B, C be points with position vectors r<sub>1</sub> = 2 \(\hat { \mathbf { i } }\) – <img src...

Let A, B, C be points with position vectors

r1 = 2 i^\hat { \mathbf { i } }+ , r2 = i^\hat { \mathbf { i } } +2+ 3 and r3 = 3 i^\hat { \mathbf { i } } ++ 2 relative to the origin 'O'. The shortest distance between point B and plane OAC is

A

10

B

5

C

57\sqrt { \frac { 5 } { 7 } }

D

2 57\sqrt { \frac { 5 } { 7 } }

Answer

2 57\sqrt { \frac { 5 } { 7 } }

Explanation

Solution

Shortest distance between B and plane OAC

(h) =

here OA\overrightarrow { \mathrm { OA } }× OC\overrightarrow { \mathrm { OC } } . OB\overrightarrow { \mathrm { OB } }= 123211312\left| \begin{array} { c c c } 1 & 2 & 3 \\ 2 & - 1 & 1 \\ 3 & 1 & 2 \end{array} \right|

= 1(–2 –1) + 2(3 – 4) + 3 (2 + 3) = 10

OA\overrightarrow { \mathrm { OA } }× OC\overrightarrow { \mathrm { OC } } = i^j^k^211312\left| \begin{array} { c c c } \hat { \mathrm { i } } & \hat { \mathrm { j } } & \hat { \mathrm { k } } \\ 2 & - 1 & 1 \\ 3 & 1 & 2 \end{array} \right| = i^\hat { \mathbf { i } } (–2– 1) + (3 –4) + (2 + 3)

= –3 i^\hat { \mathbf { i } }+ 5

|OA\overrightarrow { \mathrm { OA } }× OC\overrightarrow { \mathrm { OC } } | = 35\sqrt { 35 }

h = 1035\frac { 10 } { \sqrt { 35 } }= 2 57\sqrt { \frac { 5 } { 7 } }