Solveeit Logo

Question

Mathematics Question on Sequence and series

Let a,b,ca, b, c be in APAP. If 0<a,b,c<1,x=n=0an,0 < a,b,c < 1 ,x=\sum\limits_{n=0}^{\infty }{{{a}^{n}}}, y=n=0bny=\sum\limits_{n=0}^{\infty }{{{b}^{n}}} and z=n=0cn,z=\sum\limits_{n=0}^{\infty }{{{c}^{n}}}, then

A

2y=x+z2y=x+z

B

2x=y+z2x=y+z

C

2z=x+y2z=x+y

D

2xz=xy+yz2xz=xy+yz

Answer

2xz=xy+yz2xz=xy+yz

Explanation

Solution

Since, x=n=0anx=\sum\limits_{n=0}^{\infty }{{{a}^{n}}}
\therefore x=1+a+a2+....x=1+a+{{a}^{2}}+....\infty
\Rightarrow x=11ax=\frac{1}{1-a}
\Rightarrow (1a)x=1(1-a)x=1
\Rightarrow a=x1xa=\frac{x-1}{x} Similarly, b=y1yb=\frac{y-1}{y} and c=z1zc=\frac{z-1}{z}
Since, a, b and c are in AP.
\therefore b=a+c2b=\frac{a+c}{2}
\Rightarrow y1y=x1x+z1z2\frac{y-1}{y}=\frac{\frac{x-1}{x}+\frac{z-1}{z}}{2}
\Rightarrow 2xz(y1)=y[z(x1)+x(z1)]2xz(y-1)=y[z(x-1)+x(z-1)]
\Rightarrow 2xyz2xz=xyzyz+xyzxy2xyz-2xz=xyz-yz+xyz-xy
\Rightarrow 2xz=yzxy-2xz=-yz-xy
\Rightarrow 2xz=xy+yz2xz=xy+yz