Question
Mathematics Question on sequences
Let a,b,c be in an AP and a2,b2,c2 be in GP, if a<b<c and a+b+c=23, then the value of a is
221
231
21−31
21−21
21−21
Solution
Since, a,b and c are in an AP.
Let \hspace40mm a =A - D, b= A, c = A+D
Given, \hspace20mm a + b + c = \frac{3}{2}
⇒(A−D)+A+(A+D)=23
\Rightarrow \hspace35mm 3A =\frac{3}{2} \, \, \Rightarrow \, \, \, A =\frac{1}{2}
∴ The number are21−D,21,21+D.
Also, (21−D)2,41,(21−D)2 are in Gp.
∴ \hspace25mm \bigg(\frac{1}{4}\bigg)^2 = \bigg(\frac{1}{2}-D\bigg)^2\, \bigg(\frac{1}{2}+D\bigg)^2
\Rightarrow \hspace30mm \frac{1}{16} = \bigg(\frac{1}{4}-D^2\bigg)^2\,
\Rightarrow \hspace22mm \frac{1}{4} -D^2 = \pm \frac{1}{4}
\Rightarrow \hspace30mm D^2 = \frac{1}{2} \Rightarrow D = \pm \frac{1}{\sqrt 2}
∴ \hspace30mm a = \frac{1}{2} \pm \frac{1}{\sqrt 2}
So, out of the given values, a=21−21 is the right choice.