Solveeit Logo

Question

Mathematics Question on sequences

Let a,b,ca, b, c be in an AP and a2,b2,c2a^2,b^2,c^2 be in GP, if a<b<ca < b < c and a+b+c=32a+b+c= \frac{3}{2}, then the value of a is

A

122\frac{1}{2 \sqrt2}

B

123\frac{1}{2 \sqrt3}

C

1213\frac{1}{2}-\frac{1}{\sqrt3}

D

1212\frac{1}{2}-\frac{1}{\sqrt2}

Answer

1212\frac{1}{2}-\frac{1}{\sqrt2}

Explanation

Solution

Since, a,b and c are in an AP.
Let \hspace40mm a =A - D, b= A, c = A+D
Given, \hspace20mm a + b + c = \frac{3}{2}
(AD)+A+(A+D)=32\Rightarrow \, \, (A -D) + A + (A + D) =\frac{3}{2}
\Rightarrow \hspace35mm 3A =\frac{3}{2} \, \, \Rightarrow \, \, \, A =\frac{1}{2}
\therefore The number are12D,12,12+D. \frac{1}{2} -D,\frac{1}{2},\frac{1}{2}+D.
Also, (12D)2,14,(12D)2\bigg(\frac{1}{2}-D\bigg)^2, \frac{1}{4}, \bigg(\frac{1}{2}-D\bigg)^2 are in Gp.
\therefore \hspace25mm \bigg(\frac{1}{4}\bigg)^2 = \bigg(\frac{1}{2}-D\bigg)^2\, \bigg(\frac{1}{2}+D\bigg)^2
\Rightarrow \hspace30mm \frac{1}{16} = \bigg(\frac{1}{4}-D^2\bigg)^2\,
\Rightarrow \hspace22mm \frac{1}{4} -D^2 = \pm \frac{1}{4}
\Rightarrow \hspace30mm D^2 = \frac{1}{2} \Rightarrow D = \pm \frac{1}{\sqrt 2}
\therefore \hspace30mm a = \frac{1}{2} \pm \frac{1}{\sqrt 2}
So, out of the given values, a=1212 a = \frac{1}{2} - \frac{1}{\sqrt 2} is the right choice.