Solveeit Logo

Question

Mathematics Question on Operations on Sets

Let A, B, C be finite sets. Suppose that n(A)=10,n(B)=15,nn(A)=10, n(B)=15, n (C)=20,n(AB)=8(C)=20, n(A \cap B)=8 and n(BC)=9n(B \cap C)=9. Then the possible value of n(ABC)n ( A \cup B \cup C ) is

A

26

B

27

C

28

D

Any of the three values 26, 27, 28 is possible

Answer

Any of the three values 26, 27, 28 is possible

Explanation

Solution

n(A)=10,n(B)=15,n(20),n(AB)=8,n(BC)=9n(A)=10, n(B)=15, n(20), n(A \cap B)=8, n(B \cap C)=9
possible value of nn (AUBUC)
n(ABC)=n(A)+n(B)+n(C)n(AB)n(BC)n(AC)+n(ABC)n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B) -n(B \cap C)-n(A \cap C) +n(A \cap B \cap C)
=10+15+2089n(AC)+n(ABC)=10+15+20-8-9-n(A \cap C)+n(A \cap B \cap C)
=28n(AC)+n(ABC)=28-n(A \cap C)+n(A \cap B \cap C)
We see here,
28n(AC)+n(ABC)028-n(A \cap C)+n(A \cap B \cap C) \geqslant 0
n(ABC)28...(1)\Rightarrow n(A \cup B \cup C) \leqslant 28\,\,\,...(1)
We see, n(AB)=n(A)+n(B)n(AB)n(A \cup B)=n(A)+n(B)-n(A \cap B)
=10+158=10+15-8
=17=17
n(BC)=n(B)+n(C)n(BC)n(B \cup C) =n(B)+n(C)-n(B \cap C)
=15+209=15+20-9
=26=26
Obviously, n(ABC)26n(A \cup B \cup C) \geqslant 26 also,
n(ABC)17...(2)n(A \cup B \cup C) \geqslant 17\,\,\, ...(2)
\therefore from (1) & (2)
26n(ABC)2826 \leqslant n(A \cup B \cup C) \leqslant 28