Solveeit Logo

Question

Mathematics Question on Sets

Let A, B, C be finite sets. Suppose that n(A)=10,n(B)=15,n(C)=20,n(AB)=8n (A) = 10, n (B) = 15, n (C) = 20, n (A\cap B) = 8 and n(BC)=9n (B\cap C) = 9. Then the possible value of n(ABC)n (A\cup B \cup C) is

A

26

B

27

C

28

D

Any of the three values 26, 27, 28 is possible

Answer

Any of the three values 26, 27, 28 is possible

Explanation

Solution

We have n(ABC)=n(A)+n(B)+n(C)n \left(A \cup B \cup C\right) = n \left(A\right) + n \left(B\right) + n \left(C\right) - n(AB)n(BC)n(CA)+n(ABC)n \left(A \cap B\right) - n\left(B\cap C\right) - n \left(C \cap A\right) + n \left(A\cap B \cap C\right) =10+15+2089n(CA)+n(ABC)= 10 +15 + 20 - 8 - 9 - n \left(C \cap A\right) + n \left(A \cap B \cap C\right) =28n(CA)n(ABC)...(i)= 28 - n\left(C \cap A\right) - n \left(A \cap B \cap C\right)\quad ...\left(i\right) Since n(CA)n(ABC)n \left(C \cap A\right) \ge n \left(A \cap B \cap C\right) We have n(CA)n(ABC)0...(ii)n \left(C \cap A\right) - n \left(A \cap B \cap C\right) \ge 0\quad...\left(ii\right) From (i)\left(i\right) and (ii)\left(ii\right) n(ABC)28...(iii)n \left(A \cup B \cup C\right) \le 28\quad ...\left(iii\right) Now, n(AB)=n(A)+n(B)n(AB)n\left(A \cup B\right) = n \left(A\right) +n \left(B\right) - n \left(A \cap B\right) =10+158=17= 10 + 15 - 8 = 17 and n(BC)=n(B)+n(C)n(BC)n \left(B \cup C\right) = n \left(B\right) + n \left(C\right) - n \left(B \cap C\right) =15+209=26= 15 + 20 - 9 = 26 Since, n(ABC)n(AC)n \left(A \cup B \cup C\right) \ge n \left(A\cup C\right) and n(ABC)n(BC)n \left(A\cup B\cup C\right) \ge n \left(B\cup C\right), we have n(ABC)17n \left(A\cup B\cup C\right) \ge 17 and n(ABC)26n \left(A\cup B\cup C\right) \ge 26 Hence n(ABC)26...(iv)n \left(A\cup B\cup C\right) \ge 26 \quad...\left(iv\right) From (iii)\left(iii\right) and (iv)\left(iv\right) we obtain 26n(ABC)2826 \le n \left(A\cup B\cup C\right) \le 28 Also n(ABC)n \left(A\cup B\cup C\right) is a positive integer n(ABC)=26\therefore n\left(A\cup B\cup C\right) = 26 or 2727 or 2828