Solveeit Logo

Question

Question: Let a, b, c be distinct non-negative numbers. If the vectors \(a\mathbf{i} + a\mathbf{j} + c\mathbf{...

Let a, b, c be distinct non-negative numbers. If the vectors ai+aj+ck,i+ka\mathbf{i} + a\mathbf{j} + c\mathbf{k},\mathbf{i} + \mathbf{k} and ci+cj+bkc\mathbf{i} + c\mathbf{j} + b\mathbf{k} lie in a plane, then c is

A

The arithmetic mean of a and b

B

The geometric mean of a and b

C

The harmonic mean of a and b

D

Equal to zero

Answer

The geometric mean of a and b

Explanation

Solution

a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{matrix} \right| = 0 \Rightarrow \left| \begin{matrix} a & 0 & c \\ 1 & - 1 & 1 \\ c & 0 & b \end{matrix} \right| = 0$$ {Applying $C_{2} \rightarrow C_{2} - C_{1}\}$ $$\Rightarrow a( - b) + c(c) = 0 \Rightarrow c^{2} = ab.$$ Hence $c$ is the geometric mean of $a$ and $b.$