Question
Question: Let a, b, c be distinct non-negative numbers. If the vectors \(a\mathbf{i} + a\mathbf{j} + c\mathbf{...
Let a, b, c be distinct non-negative numbers. If the vectors ai+aj+ck,i+k and ci+cj+bk lie in a plane, then c is
A
The arithmetic mean of a and b
B
The geometric mean of a and b
C
The harmonic mean of a and b
D
Equal to zero
Answer
The geometric mean of a and b
Explanation
Solution
a & a & c \\
1 & 0 & 1 \\
c & c & b
\end{matrix} \right| = 0 \Rightarrow \left| \begin{matrix}
a & 0 & c \\
1 & - 1 & 1 \\
c & 0 & b
\end{matrix} \right| = 0$$
{Applying $C_{2} \rightarrow C_{2} - C_{1}\}$
$$\Rightarrow a( - b) + c(c) = 0 \Rightarrow c^{2} = ab.$$
Hence $c$ is the geometric mean of $a$ and $b.$