Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a, b, c be distinct non-negative numbers. If the vectors ai^\hat i + aj^\hat j + ck^\hat k, i^\hat i + k^\hat k and ci^\hat i + cj^\hat j + bk^\hat k lie in a plane, then c is

A

not arithmetic mean of a and b.

B

the geometric mean of a and b.

C

the arithmetic mean of a and b

D

the harmonic mean of a and b.

Answer

the geometric mean of a and b.

Explanation

Solution

Let a = ai^\hat i + aj^\hat j + c, b = + k^\hat k and c = ci^\hat i + cj^\hat j + bk^\hat k
a,b and c lies in a plane, if [a b c]=0,
aac 101 ccb\begin{vmatrix} a & a & c\\\ 1 & 0 & 1 \\\ c & c & b\end{vmatrix} =0
now apply C1 \to C1 - C2
0ac 101 0cb\begin{vmatrix} 0 & a & c\\\ 1 & 0 & 1 \\\ 0 & c & b\end{vmatrix} = 0
1⋅[ab−c2] = 0
ab = c2 which means c is geometric mean of a and b.