Solveeit Logo

Question

Question: Let a, b, c be distinct non-negative numbers and the vectors a<img src="https://cdn.pureessence.tech...

Let a, b, c be distinct non-negative numbers and the vectors a + a + c k^\hat { \mathbf { k } } , + k^\hat { \mathbf { k } } , c + c + b k^\hat { \mathbf { k } } lie in a plane, then the quadratic equation ax2 + 2cx + b = 0 has –

A

real and equal roots

B

real unequal roots

C

unreal roots

D

both roots real and positive

Answer

real and equal roots

Explanation

Solution

aac101ccb\left| \begin{array} { l l l } a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{array} \right| = 0

̃ c2 – ab = 0

0 = 4c2 – 4ab = 4 (c2 – ab) = 0

roots are = – 2c2a\frac { 2 \mathrm { c } } { 2 \mathrm { a } } = – ca\frac { \mathrm { c } } { \mathrm { a } } £ 0

So roots are real and equal.