Question
Question: Let a, b, c be distinct complex numbers such that $\frac{a}{1-b}=\frac{b}{1-c}=\frac{c}{1-a}=k$. Fi...
Let a, b, c be distinct complex numbers such that 1−ba=1−cb=1−ac=k.
Find the value of “k”.

21±i3
Solution
Let the given equations be:
- a=k(1−b)
- b=k(1−c)
- c=k(1−a)
We are given that a,b,c are distinct complex numbers.
Step 1: Check for simple values of k.
-
If k=0, then a=0,b=0,c=0. This contradicts the condition that a,b,c are distinct. So k=0.
-
If k=1, then:
a=1−b⟹a+b=1 b=1−c⟹b+c=1 c=1−a⟹c+a=1
From a+b=1 and b+c=1, we get a=c. This contradicts the condition that a,b,c are distinct. So k=1.
-
If k=−1, then:
a=−(1−b)=b−1 b=−(1−c)=c−1 c=−(1−a)=a−1
Substitute b=a+1 into the second equation: a+1=c−1⟹c=a+2.
Substitute c=a+2 into the third equation: a+2=a−1⟹2=−1. This is a contradiction. So k=−1.
Step 2: Substitute cyclically to find a relationship for 'a'.
From (1), a=k−kb.
Substitute b=k(1−c) into this:
a=k−k[k(1−c)]=k−k2(1−c)=k−k2+k2c.
Substitute c=k(1−a) into this:
a=k−k2+k2[k(1−a)]=k−k2+k3(1−a)=k−k2+k3−k3a.
Rearrange the terms to solve for a:
a+k3a=k−k2+k3
a(1+k3)=k−k2+k3
Similarly, we would find:
b(1+k3)=k−k2+k3
c(1+k3)=k−k2+k3
Step 3: Use the distinctness condition.
If 1+k3=0, then a=b=c=1+k3k−k2+k3. This contradicts the condition that a,b,c are distinct.
Therefore, it must be that 1+k3=0.
If 1+k3=0, then the equation a(1+k3)=k−k2+k3 becomes a(0)=k−k2+k3.
For a solution to exist, the right-hand side must also be zero:
k−k2+k3=0.
So we need both conditions to be true:
(i) 1+k3=0⟹k3=−1
(ii) k−k2+k3=0
Substitute k3=−1 into (ii):
k−k2−1=0
k2−k+1=0
Step 4: Solve the quadratic equation for k.
The roots of k2−k+1=0 are given by the quadratic formula:
k=2(1)−(−1)±(−1)2−4(1)(1)
k=21±1−4
k=21±−3
k=21±i3
Let's check if these values satisfy k3=−1.
If k=21+i3, then k=eiπ/3.
k3=(eiπ/3)3=eiπ=−1.
If k=21−i3, then k=e−iπ/3.
k3=(e−iπ/3)3=e−iπ=−1.
Both values satisfy k3=−1.
Also, we already established k=−1, and these two values are not −1.
Step 5: Verify that distinct a, b, c exist for these k values.
If k2−k+1=0, then k3=−1. The equation a(0)=0 holds for any a.
Let's choose a specific value for a, for example a=1.
If k=21+i3:
a=1
b=k(1−c)
c=k(1−a)=k(1−1)=0
Now, substitute c=0 into the second equation:
b=k(1−0)=k.
So b=21+i3.
Now check the first equation: a=k(1−b).
1=21+i3(1−21+i3)
1=21+i3(22−1−i3)
1=21+i3(21−i3)
1=412−(i3)2=41−(−3)=41+3=44=1.
This is consistent.
So for k=21+i3, we have a=1,b=21+i3,c=0. These are distinct.
If k=21−i3:
Similarly, if a=1, then c=0, and b=k=21−i3. These are also distinct.
Thus, the values of k are 21+i3 and 21−i3.
The final answer is 21±i3.