Solveeit Logo

Question

Question: Let a, b, c be distinct complex numbers such that $\frac{a}{1-b}=\frac{b}{1-c}=\frac{c}{1-a}=k$. Fi...

Let a, b, c be distinct complex numbers such that a1b=b1c=c1a=k\frac{a}{1-b}=\frac{b}{1-c}=\frac{c}{1-a}=k.

Find the value of “k”.

Answer

1±i32\frac{1 \pm i\sqrt{3}}{2}

Explanation

Solution

Let the given equations be:

  1. a=k(1b)a = k(1-b)
  2. b=k(1c)b = k(1-c)
  3. c=k(1a)c = k(1-a)

We are given that a,b,ca, b, c are distinct complex numbers.

Step 1: Check for simple values of k.

  • If k=0k=0, then a=0,b=0,c=0a=0, b=0, c=0. This contradicts the condition that a,b,ca, b, c are distinct. So k0k \neq 0.

  • If k=1k=1, then:

    a=1b    a+b=1a = 1-b \implies a+b=1 b=1c    b+c=1b = 1-c \implies b+c=1 c=1a    c+a=1c = 1-a \implies c+a=1

    From a+b=1a+b=1 and b+c=1b+c=1, we get a=ca=c. This contradicts the condition that a,b,ca, b, c are distinct. So k1k \neq 1.

  • If k=1k=-1, then:

    a=(1b)=b1a = -(1-b) = b-1 b=(1c)=c1b = -(1-c) = c-1 c=(1a)=a1c = -(1-a) = a-1

    Substitute b=a+1b=a+1 into the second equation: a+1=c1    c=a+2a+1 = c-1 \implies c = a+2.

    Substitute c=a+2c=a+2 into the third equation: a+2=a1    2=1a+2 = a-1 \implies 2=-1. This is a contradiction. So k1k \neq -1.

Step 2: Substitute cyclically to find a relationship for 'a'.

From (1), a=kkba = k - kb.

Substitute b=k(1c)b = k(1-c) into this:

a=kk[k(1c)]=kk2(1c)=kk2+k2ca = k - k[k(1-c)] = k - k^2(1-c) = k - k^2 + k^2c.

Substitute c=k(1a)c = k(1-a) into this:

a=kk2+k2[k(1a)]=kk2+k3(1a)=kk2+k3k3aa = k - k^2 + k^2[k(1-a)] = k - k^2 + k^3(1-a) = k - k^2 + k^3 - k^3a.

Rearrange the terms to solve for aa:

a+k3a=kk2+k3a + k^3a = k - k^2 + k^3

a(1+k3)=kk2+k3a(1+k^3) = k - k^2 + k^3

Similarly, we would find:

b(1+k3)=kk2+k3b(1+k^3) = k - k^2 + k^3

c(1+k3)=kk2+k3c(1+k^3) = k - k^2 + k^3

Step 3: Use the distinctness condition.

If 1+k301+k^3 \neq 0, then a=b=c=kk2+k31+k3a = b = c = \frac{k - k^2 + k^3}{1+k^3}. This contradicts the condition that a,b,ca, b, c are distinct.

Therefore, it must be that 1+k3=01+k^3 = 0.

If 1+k3=01+k^3 = 0, then the equation a(1+k3)=kk2+k3a(1+k^3) = k - k^2 + k^3 becomes a(0)=kk2+k3a(0) = k - k^2 + k^3.

For a solution to exist, the right-hand side must also be zero:

kk2+k3=0k - k^2 + k^3 = 0.

So we need both conditions to be true:

(i) 1+k3=0    k3=11+k^3 = 0 \implies k^3 = -1

(ii) kk2+k3=0k - k^2 + k^3 = 0

Substitute k3=1k^3=-1 into (ii):

kk21=0k - k^2 - 1 = 0

k2k+1=0k^2 - k + 1 = 0

Step 4: Solve the quadratic equation for k.

The roots of k2k+1=0k^2 - k + 1 = 0 are given by the quadratic formula:

k=(1)±(1)24(1)(1)2(1)k = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(1)}}{2(1)}

k=1±142k = \frac{1 \pm \sqrt{1-4}}{2}

k=1±32k = \frac{1 \pm \sqrt{-3}}{2}

k=1±i32k = \frac{1 \pm i\sqrt{3}}{2}

Let's check if these values satisfy k3=1k^3=-1.

If k=1+i32k = \frac{1+i\sqrt{3}}{2}, then k=eiπ/3k = e^{i\pi/3}.

k3=(eiπ/3)3=eiπ=1k^3 = (e^{i\pi/3})^3 = e^{i\pi} = -1.

If k=1i32k = \frac{1-i\sqrt{3}}{2}, then k=eiπ/3k = e^{-i\pi/3}.

k3=(eiπ/3)3=eiπ=1k^3 = (e^{-i\pi/3})^3 = e^{-i\pi} = -1.

Both values satisfy k3=1k^3=-1.

Also, we already established k1k \neq -1, and these two values are not 1-1.

Step 5: Verify that distinct a, b, c exist for these k values.

If k2k+1=0k^2-k+1=0, then k3=1k^3=-1. The equation a(0)=0a(0)=0 holds for any aa.

Let's choose a specific value for aa, for example a=1a=1.

If k=1+i32k = \frac{1+i\sqrt{3}}{2}:

a=1a=1

b=k(1c)b = k(1-c)

c=k(1a)=k(11)=0c = k(1-a) = k(1-1) = 0

Now, substitute c=0c=0 into the second equation:

b=k(10)=kb = k(1-0) = k.

So b=1+i32b = \frac{1+i\sqrt{3}}{2}.

Now check the first equation: a=k(1b)a = k(1-b).

1=1+i32(11+i32)1 = \frac{1+i\sqrt{3}}{2} \left(1 - \frac{1+i\sqrt{3}}{2}\right)

1=1+i32(21i32)1 = \frac{1+i\sqrt{3}}{2} \left(\frac{2 - 1 - i\sqrt{3}}{2}\right)

1=1+i32(1i32)1 = \frac{1+i\sqrt{3}}{2} \left(\frac{1 - i\sqrt{3}}{2}\right)

1=12(i3)24=1(3)4=1+34=44=11 = \frac{1^2 - (i\sqrt{3})^2}{4} = \frac{1 - (-3)}{4} = \frac{1+3}{4} = \frac{4}{4} = 1.

This is consistent.

So for k=1+i32k=\frac{1+i\sqrt{3}}{2}, we have a=1,b=1+i32,c=0a=1, b=\frac{1+i\sqrt{3}}{2}, c=0. These are distinct.

If k=1i32k = \frac{1-i\sqrt{3}}{2}:

Similarly, if a=1a=1, then c=0c=0, and b=k=1i32b=k=\frac{1-i\sqrt{3}}{2}. These are also distinct.

Thus, the values of kk are 1+i32\frac{1+i\sqrt{3}}{2} and 1i32\frac{1-i\sqrt{3}}{2}.

The final answer is 1±i32\boxed{\frac{1 \pm i\sqrt{3}}{2}}.