Solveeit Logo

Question

Question: Let a, b, c, be distinct and non-negative. If the vectors \(a \hat { i } + a \hat { j } + c \hat { k...

Let a, b, c, be distinct and non-negative. If the vectors ai^+aj^+ck^a \hat { i } + a \hat { j } + c \hat { k }, i^+k^\hat { \mathrm { i } } + \hat { \mathrm { k } } , and ci^+cj^+bk^c \hat { i } + c \hat { j } + b \hat { k } lie in a plane, then c is

A

A.M. of a and b

B

G.M. of a and b

C

H.M of a and b

D

Equal to zero

Answer

G.M. of a and b

Explanation

Solution

Since these vectors are coplaner, =0

⇒ -ac – a( b –c) + c2 = 0 ⇒ c2 = ab