Question
Mathematics Question on Matrices
Let A,B,C be 3×3 matrices such that A is symmetric and B and C are skew-symmetric Consider the statements (S1) A13B26−B26A13 is symmetric (S2) A26C13−C−13A26 is symmetric Then,
A
Only S1 is true
B
Both S1 and S2 are false
C
Both S1 and S2 are true
D
Only S2 is true
Answer
Only S2 is true
Explanation
Solution
The correct answer is (D) : Only S2 is true
Given, AT=A,BT=−B,CT=−C
Let M=A13B26−B26A13
Then, MT=(A13B26−B26A13)T
=(A13B26)T−(B26A13)T
=(BT)26(AT)13−(AT)13(BT)26
=B26A13−A13B26=−M
Hence, M is skew symmetric
Let, N=A26C13−C13A26
then, NT=(A26C13)T−(C13A26)T
=−(C)13(A)26+A26C13=N
Hence, N is symmetric.
∴ Only S2 is true.