Question
Mathematics Question on Vector Algebra
Let a, b, c are three non-coplanar vectors such that r1=a−b+c,r2=b+c−a,r3=c+a+b, r=2a−3b+4c.Ifr=λ1r1+λ2r2+λ3r3,then
A
λ1=7
B
λ1+λ3=6
C
λ1+λ2+λ3=4
D
λ3+λ2=2
Answer
λ1+λ2+λ3=4
Explanation
Solution
We have λ1r1+λ2r2+λ3r3 ⇒2a−3b+4c=(λ1−λ2+λ3)a+(−λ1+λ2+λ3)b+(λ1+λ2+λ3)c ⇒λ1−λ2+λ3=2,−λ1+λ2+λ3=−3,λ1+λ2+λ3= (∵a,b,carenon−coplanar) ⇒λ1=27,λ2=1,λ3=−21 Therefore,λ1+λ3=3andλ1+λ2+λ3=4.