Solveeit Logo

Question

Question: Let a, b, c and d be positive real numbers such that a + b + c + d = 11 If the maximum value of a ^ ...

Let a, b, c and d be positive real numbers such that a + b + c + d = 11 If the maximum value of a ^ 5 * b ^ 3 * c ^ 2 * d is 6250 ẞ, then the value of ẞ is

Answer

54

Explanation

Solution

To find the maximum value of the expression a5b3c2da^5 b^3 c^2 d subject to the condition a+b+c+d=11a+b+c+d=11, where a,b,c,da, b, c, d are positive real numbers, we can use the AM-GM inequality.

The AM-GM inequality states that for nn non-negative numbers x1,x2,,xnx_1, x_2, \ldots, x_n, the arithmetic mean is greater than or equal to the geometric mean: x1+x2++xnnx1x2xnn\frac{x_1 + x_2 + \ldots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \ldots x_n} Equality holds when x1=x2==xnx_1 = x_2 = \ldots = x_n.

We want to maximize the product P=a5b3c2dP = a^5 b^3 c^2 d. The sum of the powers in the product is 5+3+2+1=115+3+2+1=11. This matches the sum a+b+c+d=11a+b+c+d=11. To apply AM-GM effectively, we consider 11 terms such that their sum is a+b+c+d=11a+b+c+d=11 and their product is proportional to a5b3c2da^5 b^3 c^2 d. We split aa into 5 equal parts, bb into 3 equal parts, cc into 2 equal parts, and dd into 1 part. Let the 11 terms be: Five terms of a5\frac{a}{5} Three terms of b3\frac{b}{3} Two terms of c2\frac{c}{2} One term of d1\frac{d}{1}

The sum of these 11 terms is: 5(a5)+3(b3)+2(c2)+1(d1)=a+b+c+d5 \left(\frac{a}{5}\right) + 3 \left(\frac{b}{3}\right) + 2 \left(\frac{c}{2}\right) + 1 \left(\frac{d}{1}\right) = a+b+c+d Given a+b+c+d=11a+b+c+d=11, the sum of these 11 terms is 11.

Now, applying the AM-GM inequality to these 11 terms: (a5)++(a5)+(b3)++(b3)+(c2)+(c2)+(d1)11(a5)5(b3)3(c2)2(d1)111\frac{\left(\frac{a}{5}\right) + \ldots + \left(\frac{a}{5}\right) + \left(\frac{b}{3}\right) + \ldots + \left(\frac{b}{3}\right) + \left(\frac{c}{2}\right) + \left(\frac{c}{2}\right) + \left(\frac{d}{1}\right)}{11} \ge \sqrt[11]{\left(\frac{a}{5}\right)^5 \left(\frac{b}{3}\right)^3 \left(\frac{c}{2}\right)^2 \left(\frac{d}{1}\right)^1} Substituting the sum: 1111a5b3c2d5533221111\frac{11}{11} \ge \sqrt[11]{\frac{a^5 b^3 c^2 d}{5^5 \cdot 3^3 \cdot 2^2 \cdot 1^1}} 1a5b3c2d553322111 \ge \sqrt[11]{\frac{a^5 b^3 c^2 d}{5^5 \cdot 3^3 \cdot 2^2}} Raising both sides to the power of 11: 111a5b3c2d5533221^{11} \ge \frac{a^5 b^3 c^2 d}{5^5 \cdot 3^3 \cdot 2^2} 1a5b3c2d31252741 \ge \frac{a^5 b^3 c^2 d}{3125 \cdot 27 \cdot 4} The maximum value of a5b3c2da^5 b^3 c^2 d is 5533225^5 \cdot 3^3 \cdot 2^2. Let's calculate this value: 55=31255^5 = 3125 33=273^3 = 27 22=42^2 = 4 Maximum value =3125274=3125108= 3125 \cdot 27 \cdot 4 = 3125 \cdot 108. 3125×108=3125×(100+8)=312500+(3125×8)=312500+25000=3375003125 \times 108 = 3125 \times (100 + 8) = 312500 + (3125 \times 8) = 312500 + 25000 = 337500.

The maximum value of a5b3c2da^5 b^3 c^2 d is 337500337500. The problem states that the maximum value is 6250β6250 \beta. So, we have the equation: 6250β=3375006250 \beta = 337500 Now, we solve for β\beta: β=3375006250\beta = \frac{337500}{6250} β=33750625\beta = \frac{33750}{625} To simplify the fraction, we can divide both numerator and denominator by common factors. Both are divisible by 25: β=33750÷25625÷25=135025\beta = \frac{33750 \div 25}{625 \div 25} = \frac{1350}{25} Again, both are divisible by 25: β=1350÷2525÷25=541\beta = \frac{1350 \div 25}{25 \div 25} = \frac{54}{1} β=54\beta = 54

The equality in AM-GM holds when all the terms are equal: a5=b3=c2=d1=k\frac{a}{5} = \frac{b}{3} = \frac{c}{2} = \frac{d}{1} = k (for some constant kk) So, a=5k,b=3k,c=2k,d=ka=5k, b=3k, c=2k, d=k. Substituting these into the sum a+b+c+d=11a+b+c+d=11: 5k+3k+2k+k=115k+3k+2k+k = 11 11k=1111k = 11 k=1k = 1 Thus, the maximum value occurs when a=5,b=3,c=2,d=1a=5, b=3, c=2, d=1.

The final answer is 54\boxed{54}.

Explanation of the solution:

  1. Identify the expression to maximize (P=a5b3c2dP = a^5 b^3 c^2 d) and the constraint (a+b+c+d=11a+b+c+d=11).
  2. Recognize that AM-GM inequality is suitable for maximizing a product given a constant sum.
  3. To apply AM-GM, create terms whose sum is constant and whose product yields the desired expression. Since the powers are 5, 3, 2, 1, consider 5 terms of a/5a/5, 3 terms of b/3b/3, 2 terms of c/2c/2, and 1 term of d/1d/1.
  4. The sum of these 5+3+2+1=115+3+2+1=11 terms is (a/5)×5+(b/3)×3+(c/2)×2+(d/1)×1=a+b+c+d=11(a/5)\times 5 + (b/3)\times 3 + (c/2)\times 2 + (d/1)\times 1 = a+b+c+d = 11.
  5. Apply AM-GM: sum of termsnumber of termsproduct of termsnumber of terms\frac{\text{sum of terms}}{\text{number of terms}} \ge \sqrt[\text{number of terms}]{\text{product of terms}}. 1111(a5)5(b3)3(c2)2(d1)111\frac{11}{11} \ge \sqrt[11]{\left(\frac{a}{5}\right)^5 \left(\frac{b}{3}\right)^3 \left(\frac{c}{2}\right)^2 \left(\frac{d}{1}\right)^1}.
  6. Simplify and solve for the maximum value of a5b3c2da^5 b^3 c^2 d: 1a5b3c2d5533221 \ge \frac{a^5 b^3 c^2 d}{5^5 \cdot 3^3 \cdot 2^2}, so a5b3c2d553322a^5 b^3 c^2 d \le 5^5 \cdot 3^3 \cdot 2^2.
  7. Calculate the maximum value: 553322=3125274=3375005^5 \cdot 3^3 \cdot 2^2 = 3125 \cdot 27 \cdot 4 = 337500.
  8. Equate this maximum value to the given form 6250β6250 \beta: 6250β=3375006250 \beta = 337500.
  9. Solve for β\beta: β=3375006250=54\beta = \frac{337500}{6250} = 54.