Solveeit Logo

Question

Mathematics Question on Straight lines

Let a,b,ca ,b,c and dd be non-zero numbers. If the point of intersection of the lines 4ax+2ay+c=04ax+2ay+c = 0 and 5bx+2by+d=05bx + 2by+ d = 0 lies in the fourth quadrant and is equidistant from the two axes, then

A

2bc3ad=02bc - 3ad = 0

B

2bc+3ad=02bc + 3ad = 0

C

3bc2ad=0 3bc - 2ad= 0

D

3bc+2ad=03bc + 2ad = 0

Answer

3bc2ad=0 3bc - 2ad= 0

Explanation

Solution

Let (α,α)(\alpha,-\alpha) be the point of intersection
4aα2aα+c=0\therefore 4 a \alpha-2 a \alpha+ c =0
α=c2a\Rightarrow \alpha=-\frac{c}{2a}
and 5bα2bα+d=05b \alpha-2 b \alpha+ d =0
α=d3b\Rightarrow \alpha=-\frac{d}{3 b}
3bc=2ad\Rightarrow 3 b c=2 a d
3bc2ad=0\Rightarrow 3 b c-2 a d=0
:
The point of intersection will be
x2ad2bc=y4ad5bc=18ab10ab\frac{x}{2 a d-2 b c}=\frac{-y}{4 a d-5 b c}=\frac{1}{8 a b-10 a b}
x=2(adbc)2ab\Rightarrow x=\frac{2(a d-b c)}{-2 a b}
y=5bc4ad2ab\Rightarrow y=\frac{5 b c-4 a d}{-2 a b}
\because Point of intersection is in fourth quadrant so x is positive and y is negative
Also distance from axes is same
So x=yx = - y ((\because distance from x-axis is - y as y is negative)


2(adbc)2ab=(5bc4ad)2ab\frac{2(a d-b c)}{-2 a b}=\frac{-(5 b c-4 a d)}{-2 a b}
2ad2bc=5bc+4ad2 a d-2 b c=-5 b c+4 a d
3bc2ad=0(i)\Rightarrow 3 b c-2 a d=0\,\,\,\,\,\,\dots(i)