Question
Mathematics Question on Algebra of Complex Numbers
Let a,b be two real numbers such that a b<0; If the complex number b+i1+ai is of unit modulus and a +ib lies on the circle ∣z−I∣=∣2z∣, then a possible value of 4b1+[a], where [t] is greatest integer function, is :
A
21
B
−21
C
1
D
−1
Answer
−21
Explanation
Solution
ab<0∣∣b+i1+ai∣∣=1
∣1+ai∣=∣b+i∣
a2+1=b2+1⇒a=±b⇒b=−aasab<0
(a,b) lies on ∣z−1∣=∣2z∣
la+ib−1∣=2la+ib∣
(a−1)2+b2=4(a2+b2)
(a−1)2=a2=4(2a2)
1−2a=6a2⇒6a2+2a−1=0
a=12−2±28=6−1±7
a=67−1&b=61−7
[a]=0
∴4b1+[a]=4(1−7)6=−(41+7)
or [a]=0
Similarly it is not matching with a=6−1−7