Solveeit Logo

Question

Mathematics Question on Algebra of Complex Numbers

Let a,ba, b be two real numbers such that a b&lt0; If the complex number 1+aib+i\frac{1+ai}{b+i} is of unit modulus and aa +ib+i b lies on the circle zI=2z|z-I|=|2 z|, then a possible value of 1+[a]4b\frac{1+[a ]}{4 b}, where [t][t] is greatest integer function, is :

A

12\frac{1}{2}

B

12-\frac{1}{2}

C

11

D

1-1

Answer

12-\frac{1}{2}

Explanation

Solution

ab<0∣∣​b+i1+ai​∣∣​=1
∣1+ai∣=∣b+i∣
a2+1=b2+1⇒a=±b⇒b=−aasab<0
(a,b) lies on ∣z−1∣=∣2z∣
la+ib−1∣=2la+ib∣
(a−1)2+b2=4(a2+b2)
(a−1)2=a2=4(2a2)
1−2a=6a2⇒6a2+2a−1=0
a=12−2±28​​=6−1±7​​
a=67​−1​&b=61−7​​
[a]=0
∴4b1+[a]​=4(1−7​)6​=−(41+7​​)
or [a]=0
Similarly it is not matching with a=6−1−7​​