Question
Mathematics Question on Complex Numbers and Quadratic Equations
Let α,β be the roots of the equation, ax2+bx+c=0.a,b,c are real and sn=αn+βn and 3\1+s1\1+s21+s11+s21+s31+s21+s31+s4=a4k(a+b+c)2 then k=
A
b2-4ac
B
b2+4ac
C
b2+2ac
D
4ac-b2
Answer
b2-4ac
Explanation
Solution
The correct answer is option (A): b2-4ac
3\1+s1\1+s21+s11+s21+s31+s21+s31+s4=1+1+1 1+α+β 1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4
=1 1 11αα21ββ21 1 11αα21ββ2
=[αβ(β−α)−β2+α2+β−α][αβ(β−α)−(β2−α2)+(β−α)]
=(β−α)2[αβ(β+α)+1]2………..(i)
Now, ax2+bx+c=0
here α+β=−ab and αβ=ac
Now, (α−β)2=(α+β)2−4αβ
\Rightarrow$$\frac{b^2}{a^2}-\frac{4c}{a} = a2b2−4ac
Now, Δ = (a2b2−4ac)[ac−(−ab)+1]
⇒(a2b2−4ac)(ac+a+b)2 = a41(b2−4ac)(a+b+c)2
Now, a4k(a+b+c)2=a41(b2−4ac)(a+b+c)2
⇒k=(b2−4ac)