Solveeit Logo

Question

Multivariable Calculus Question on Integral Calculus

Let a, b be positive real numbers such that a<ba\lt b. Given that
limN0Net2dt=π2,\lim\limits_{N\rightarrow\infin}\displaystyle\int^{N}_{0}e^{-t^2}dt=\frac{\sqrt \pi}{2}, the value of
limN0N1t2(eat2ebt2)dt\lim\limits_{N\rightarrow\infin}\displaystyle\int^{N}_{0}\frac{1}{t^2}(e^{-at^2}-e^{-bt^2})dt is equal to

A

√π(√a – √b).

B

√π(√a + √b).

C

-√π(√a + √b).

D

√π(√b – √a).

Answer

√π(√b – √a).

Explanation

Solution

The correct option is (D): √π(√b – √a)