Question
Mathematics Question on linear inequalities
Let α,β, and γ be real numbers. Consider the following system of linear equations:
x + 2y + z = 7
x + αz = 11
2x - 3y + βz = γ
Match each entry in List I to the correct entries in List II
List I | List II |
---|---|
(P) | If β=21(7α - 3) and γ=28, then the system has |
(Q) | If β=21(7α - 3) and \gamma$$\neq28, then the system has |
(R) | If β\neq$$\frac{1}{2}(7α - 3) where α=1 and \gamma$$\neq28, then the system has |
(S) | If β\neq$$\frac{1}{2}(7α - 3) where α=1 and γ=28, then the system has |
(5) |
(P) →(3), (Q)→ (2), (R) →(1), (S) →(4)
(P) →(3), (Q)→ (2), (R) →(5), (S) →(4)
(P) →(2), (Q)→ (1), (R) →(4), (S) →(5)
(P) →(2), (Q)→ (1), (R) →(1), (S) →(3)
(P) →(3), (Q)→ (2), (R) →(1), (S) →(4)
Solution
x+2y+z=7
x+αz=11
2x−3y+βz=γ
△= 1 1 220−31αβ= 0
3α−2(β−2α)−3=0
7α−2β=3
⇒ β=21(7α−3)
7 11 γ20−31αβ,△2=1 1 2711γ1αβ,△3=1 1 270−3211γ
△3=0
⇒ 33−2(γ−22)+7(−3)=0
γ=28
△1=21α−2(11β−αβ)−33
=21α−22β+22β+2αβ−33
△2=11β−αβ−7(β−2α)+γ−22
=14α+4β+γ−αγ−22
(P) If β=21(7α−3)andγ=28
△=0,△1=0,△2=0,△3=0
Infinitely many solutions
x = 11, y = – 2 and z = 0 will satisfy all the three given equations, so it is a solution.
(Q) If β=21(7α−3)andγ=28then
△=0,but△3=0 so no solution
(R) If β=21(7α−3),α=1andγ=28
△=0,△3=0 so a unique solution
(S) If β=21(7α−3),α=1,γ=28
△=0,△3=0,△1=0,△2=0,so a unique solution
x = 11, y = – 2 and z = 0 will satisfy all the three equations.
Hence, The correct option is (A) (P) →(3), (Q)→ (2), (R) →(1), (S) →(4).