Solveeit Logo

Question

Mathematics Question on Conic sections

Let A,B,A, B, and CC be three points on the parabola y2=6xy^2 = 6x, and let the line segment ABAB meet the line LL through CC parallel to the xx-axis at the point DD. Let MM and NN respectively be the feet of the perpendiculars from AA and BB on LL. Then (AMBNCD)2\left( \frac{\text{AM} \cdot \text{BN}}{\text{CD}} \right)^2 is equal to ______ .

Answer

Parabola

We are given:
mAB=mADm_{AB} = m_{AD}
    2t1+t2=2a(t1t3)at12α\implies \frac{2}{t_1 + t_2} = \frac{2a(t_1 - t_3)}{a t_1^2 - \alpha}
    at12α=at12t1t3+t1t2t2t3\implies a t_1^2 - \alpha = a \\{ t_1^2 - t_1 t_3 + t_1 t_2 - t_2 t_3 \\}
    α=a(t1t3+t2t3t1t2)\implies \alpha = a ( t_1 t_3 + t_2 t_3 - t_1 t_2 )
AM=2a(t1t3),BN=2a(t2t3),AM = |2a ( t_1 - t_3 )|, \quad BN = |2a ( t_2 - t_3 )|,
CD=at32αCD = |a t_3^2 - \alpha|
CD=at32a(t1t3+t2t3t1t2)CD = |a t_3^2 - a ( t_1 t_3 + t_2 t_3 - t_1 t_2 ) |
=at3(t3t1)t2(t3t1)= a | t_3 ( t_3 - t_1 ) - t_2 ( t_3 - t_1 ) |
=a(t3t2)(t3t1)= a | ( t_3 - t_2 ) ( t_3 - t_1 ) |
(AMBNCD)2=2a(t1t3)2a(t2t3)2a(t3t2)(t3t1)\left( \frac{AM \cdot BN}{CD} \right)^2 = \frac{ \\{ 2a ( t_1 - t_3 ) \cdot 2a ( t_2 - t_3 ) \\}^2 }{ a ( t_3 - t_2 ) ( t_3 - t_1 )}
=16a2a(t1t3)2(t2t3)2(t3t2)(t3t1)= \frac{16 a^2}{a} \cdot \frac{( t_1 - t_3 )^2 ( t_2 - t_3 )^2 }{ ( t_3 - t_2 ) ( t_3 - t_1 )}
16a2=16×94=3616 a^2 = 16 \times \frac{9}{4} = 36

Thus, the final answer is:
36\boxed{36}