Solveeit Logo

Question

Question: Let \(A,B\) and \(C\) be three events, which are pairwise independence and \(\overline E \) denotes ...

Let A,BA,B and CC be three events, which are pairwise independence and E\overline E denotes the complement of an event EE. If P(ABC)=0P\left( {A \cap B \cap C} \right) = 0 and P(C)>0P\left( C \right) > 0, then P[(AB)C]P\left[ {\left( {\overline A \cap \overline B } \right)|C} \right] is equal to:
(A) P(A)+P(B)P\left( A \right) + P\left( {\overline B } \right)
(B) P(A)P(B)P\left( {\overline A } \right) - P\left( {\overline B } \right)
(C) P(A)P(B)P\left( {\overline A } \right) - P\left( B \right)
(D) P(A)+P(B)P\left( {\overline A } \right) + P\left( {\overline B } \right)

Explanation

Solution

The events are called pairwise independent if any two events in the collection are independent of each other. If three events X,YX,Y and ZZ are pairwise independent, then P(XY)=P(X)P(Y)P\left( {X \cap Y} \right) = P\left( X \right) \cdot P\left( Y \right), P(YZ)=P(Y)P(Z)P\left( {Y \cap Z} \right) = P\left( Y \right) \cdot P\left( Z \right) and P(XZ)=P(X)P(Z)P\left( {X \cap Z} \right) = P\left( X \right) \cdot P\left( Z \right).

Complete step-by-step answer:
Given, P(ABC)=0P\left( {A \cap B \cap C} \right) = 0 and A,BA,B and CC are pair-wise independent events, therefore,
P(AB)=P(A)P(B)P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( B \right)
P(BC)=P(B)P(C)P\left( {B \cap C} \right) = P\left( B \right) \cdot P\left( C \right)
P(AC)=P(A)P(C)P\left( {A \cap C} \right) = P\left( A \right) \cdot P\left( C \right)
P[(AB)C]P\left[ {\dfrac{{\left( {\overline A \cap \overline B } \right)}}{C}} \right] is of the form of P(AB)=P(AB)P(B)P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}.
Therefore, P[(AB)C]P\left[ {\dfrac{{\left( {\overline A \cap \overline B } \right)}}{C}} \right] =P[(AB)C]P(C) = \dfrac{{P\left[ {\left( {\overline A \cap \overline B } \right) \cap C} \right]}}{{P\left( C \right)}}
=P(C)P(AC)P(BC)+P(ABC)P(C)= \dfrac{{P\left( C \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)}}{{P\left( C \right)}}
Substitute P(AC)=P(A)P(C)P\left( {A \cap C} \right) = P\left( A \right) \cdot P\left( C \right), P(BC)=P(B)P(C)P\left( {B \cap C} \right) = P\left( B \right) \cdot P\left( C \right)and P(ABC)=0P\left( {A \cap B \cap C} \right) = 0,
=P(C)P(A)P(C)P(B)P(C)+0P(C)= \dfrac{{P\left( C \right) - P\left( A \right) \cdot P\left( C \right) - P\left( B \right) \cdot P\left( C \right) + 0}}{{P\left( C \right)}}
=P(C)P(C)P(A)P(C)P(C)P(B)P(C)P(C)= \dfrac{{P\left( C \right)}}{{P\left( C \right)}} - \dfrac{{P\left( A \right) \cdot P\left( C \right)}}{{P\left( C \right)}} - \dfrac{{P\left( B \right) \cdot P\left( C \right)}}{{P\left( C \right)}}
=1P(A)P(B)= 1 - P\left( A \right) - P\left( B \right)
=P(A)P(B)= P\left( {\overline A } \right) - P\left( B \right)

Hence, option (C) is the correct answer.

Note: The term 1P(A)P(B)1 - P\left( A \right) - P\left( B \right) may also be equal to P(A)P(B)P\left( A \right) - P\left( {\overline B } \right). So, if we get P(A)P(B)P\left( A \right) - P\left( {\overline B } \right) as an option, then it would be the correct. While if we got both P(A)P(B)P\left( {\overline A } \right) - P\left( B \right) and P(A)P(B)P\left( A \right) - P\left( {\overline B } \right) as options, the both will be correct.