Solveeit Logo

Question

Mathematics Question on Subsets

Let A, B and C be the sets such that AB=ACA ∪ B = A ∪ C and AB=ACA ∩ B = A ∩ C. show that B = C.

Answer

Let, A, B and C be the sets such that AB=ACA ∪ B = A ∪ C and AB=AC.A ∩ B = A ∩ C.
To show: B = C
Let xBx ∈ B
xAB                                    [BAB]⇒ x ∈ A ∪ B\space\space \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space[ B ⊂ A ∪ B]
xAC                                      [AB=AC]⇒ x ∈ A ∪ C\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space [ A ∪ B = A ∪ C]
xA  orxC⇒ x ∈ A \space or ⇒ x ∈ C
**Case I **xAx ∈ A
Also, xBx ∈ B
xAB∴ x ∈ A ∩ B
xAC[AB=AC]⇒ x ∈ A ∩ C [ ∴ A ∩ B = A ∩ C]
xA∴ x ∈ A and xCx ∈ C
xC∴ x ∈ C
BC∴ B ⊂ C
Similarly, we can show that CB.C ⊂ B.
B=C∴ B = C